[1]HOU Tao,ZHANG Qiang.Multi-mode soft-switch variable-pitch control of wind turbines based on T-S fuzzy weighting[J].CAAI Transactions on Intelligent Systems,2018,13(4):625-632.[doi:10.11992/tis.201710009]
Copy

Multi-mode soft-switch variable-pitch control of wind turbines based on T-S fuzzy weighting

References:
[1] YIN Xiuxing, LIN Yonggang, LI Wei, et al. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines[J]. ISA transactions, 2015, 58:629-634.
[2] YUAN Yuan, TANG J. Adaptive pitch control of wind turbine for load mitigation under structural uncertainties[J]. Renewable energy, 2017, 105:483-494.
[3] SONG Dongran, YANG Jian, DONG Mi, et al. Model predictive control with finite control set for variable-speed wind turbines[J]. Energy, 2017, 126:564-572.
[4] 吴洁, 孟克其劳, 贾大江, 等. 1.5MW永磁直驱风力发电机组变桨控制系统的改进[J]. 太阳能学报, 2016, 37(8):2074-2079. WU Jie, MENG Keqilao, JIA Dajiang, et al. Improved pitch control system of 1.5 MW permanent magnet direct drive wind turbine[J]. Atct energiae solaris sinica, 2016, 37(8):2074-2079.
[5] MORADI H, VOSSOUGHI G. Robust control of the variable speed wind turbines in the presence of uncertainties:a comparison between H, and PID controllers[J]. Energy, 2015, 90:1508-1521.
[6] 任丽娜, 吕明月, 王振臣. 改进蜂群算法在风机变桨距控制中的应用[J]. 机械设计与制造, 2015, 36(3):43-46. REN Lina, LV Mingyue, WANG Zhenchen. Improved bee colony algorithm on the wind turbine pitch control[J]. Machinery design & manufacture, 2015, 36(3):43-46.
[7] Yin Xiuxing, Lin Yonggang, Li Wei, et al. A novel fuzzy integral sliding mode current control strategy for maximizing wind power extraction and eliminating voltage harmonics[J]. Energy, 2015, 85:677-686.
[8] WANG Baohua, Qin Shengsheng. Backstepping sliding mode control of variable pitch wind power system[C]//2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC). Chengdu, China, 2010:1-3.
[9] MEDJBER A, GUESSOUM A, BELMILI H, et al. New neural network and fuzzy logic controllers to monitor maximum power for wind energy conversion system[J]. Energy, 2016, 106:137-146.
[10] QIN Bin, ZHOU Hao, DU Kang, et al. Sliding mode control of pitch angle based on RBF neural-network[J]. Transactions of China electrotechnical society, 2013, 28(5):37-41.
[11] 周飞航, 刘军. 基于状态反馈的直驱风电系统模糊控制策略[J]. 电网技术, 2016, 40(9):2758-2763. ZHOU Feihang, LIU Jun. Fuzzy control strategy of direct-drive wind power system based on state feedback[J]. Power system technology, 2016, 40(9):2758-2763.
[12] ANDERSON P M, BOSE A. Stability simulation of wind turbine systems[J]. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(12):3791-3795.
[13] BOUKHEZZAR B, LUPU L, SIGUERDIDJANE H, et al. Multivariable control strategy for variable speed, variable pitch wind turbines[J]. Renewable Energy, 2007, 32(8):1273-1287.
[14] HUI J, BAKHSHAI A. A new adaptive control algorithm for maximum power point tracking for wind energy conversion systems[C]//2008 PESC Proceedings of the Power Electronics Specialist Conference. Rhodes, Greece, 2008:4003-4007.
[15] DAHBI A, NAIT-SAID N, NAIT-SAID M-S. A novel combined MPPT-pitch angle control for wide range variable speed wind turbine based on neural network[J]. International journal of hydrogen energy, 2016, 41(22):9427-9442.
[16] ZHANG Xinfang, XU Daping. Adaptive fuzzy control for variable speed variable pitch wind turbines[J]. IFAC power plants and power systems control, 2003, 36(20):1031-1036.
[17] BAGHERI P, Sun Qiao. Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics[J]. ISA transactions, 2016, 63:233-241.
[18] 唐酿, 肖湘宁, 陈众. 基于Sugeno模糊推理的静止无功补偿器多模态切换方法[J]. 电网技术, 2011, 35(8):140-143. TANG Niang, XIAO Xiangning, CHEN Zhong. A method of multi-mode switching for SVC based on sugeno fuzzy inference[J]. Power system technology, 2011, 35(8):140-143.
Similar References:

Memo

-

Last Update: 2018-08-25

Copyright © CAAI Transactions on Intelligent Systems