[1]ZHANG Sen,ZHANG Chen,LIN Peiguang,et al.Web search topic analysis based on user search query logs[J].CAAI Transactions on Intelligent Systems,2017,12(5):668-677.[doi:10.11992/tis.201706096]
Copy

Web search topic analysis based on user search query logs

References:
[1] SUNEHAG P. Using two-stage conditional word frequency models to model word burstiness and motivating TF-IDF[J]. Journal of machine learning reasearch, 2017, 2:8.
[2] ELKAN C. Clustering documents with an exponential-family approximation of the Dirichlet compound multinomial distribution[C]//Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh. Pennsylvania, USA, 2006:289-296.
[3] DOYLE G, ELKAN C. Accounting for burstiness in topic models[C]//Proceedings of the 26th Annual International Conference on Machine Learning Montreal. QC, Canada, 2009:281-288.
[4] XUE G R, ZENG H J, CHEN Z, et al. Optimizing web search using web click-through data[C]//Proceedings of the thirteenth ACM international conference on Information and Knowledge Management. Washington, USA, 2004:118-126.
[5] GUO F, LIU C, WANG Y M. Efficient multiple-click models in web search[C]//Proceedings of the Second ACM International Conference on Web Search and Data Mining. Barcelona, Spain, 2009:124-131.
[6] 张宇, 宋巍, 刘挺, 等. 基于URL主题的查询分类方法[J]. 计算机研究与发展, 2012, 49(6):1298-1305. ZHANG Yu, SONG Wei, LIU Ting, et al. Query classification based on url topic[J]. Journal of computer research and development, 2012, 49(6):1298-1305.
[7] MADSEN R E, KAUCHAK D, ELKAN C. Modeling word burstiness using the dirichlet distribution[C]//Proceedings of the 22nd international conference on Machine iearning. Bonn, Germany, 2005:545-552.
[8] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3(1):993-1022.
[9] WANG X, MCCALLUM A. Topics over time:a non-Markov continuous-time model of topical trends[C]//Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. Philadelphia, USA, 2006:424-433.
[10] 徐戈, 王厚峰. 自然语言处理中主题模型的发展[J]. 计算机学报, 2011, 34(8):1423-1436. XU Ge, WANG Houfeng. The development of topic model in natural language processing[J]. Chinese journal of computers, 2011, 34(8):1423-1436.
[11] 张晨逸, 孙建伶, 丁轶群. 基于MB-LDA模型的微博主题挖掘[J]. 计算机研究与发展, 2011, 48(10):1795-1802.ZHANG Chenyi, SUN Jianling, DING Yiqun. Topic mining for microblog based on mb-lda model[J]. Journal of computer research and development, 2011, 48(10):1795-1802.
[12] 刘少鹏, 印鉴, 欧阳佳, 等. 基于MB-HDP模型的微博主题挖掘[J]. 计算机学报, 2015, 38(7):1408-1419. LIU Shaopeng, YIN Jian, OUYANG Jia, et al. Topic mining from microblogs based on MB-HDP model[J]. Chinese Journal of Computers, 2015, 38(7):1408-1419.
[13] JIANG D, TONG Y, SONG Y. Cross-lingual topic discovery from multilingual search engine query log[J]. ACM transactions on information systems (TOIS), 2016, 35(2):9.
[14] JIANG D, LEUNG K W T, NG W. Query intent mining with multiple dimensions of web search data[J]. World wide web, 2016, 19(3):475.
[15] JIANG D, YANG L. Query intent inference via search engine log[J]. Knowledge and information systems, 2016, 49(2):661-685.
[16] HUANG J, EFTHIMIADIS E N. Analyzing and evaluating query reformulation strategies in web search logs[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong, China, 2009:77-86.
[17] GRIFFITHS T L, STEYVERS M. Finding scientific topics[J]. Proceedings of the national academy of sciences, 2004, 101(1):5228-5235.
[18] ZHU C, BYRD R H, LU P, et al. Algorithm 778:L-BFGS-B:Fortran subroutines for large-scale bound-constrained optimization[J]. ACM transactions on mathematical software (TOMS), 1997, 23(4):550-560.
[19] MANNING C D, RAGHAVAN P, SCHVTZE H. Introduction to information retrieval[M]. Cambridge:Cambridge University Press, 2008:1-16.
[20] JIANG D, NG W. Mining web search topics with diverse spatiotemporal patterns[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. Dublin, Ireland, 2013:881-884.
[21] LI W, MCCALLUM A. Pachinko allocation:DAG-structured mixture models of topic correlations[C]//Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, USA, 2006:577-584.
Similar References:

Memo

-

Last Update: 2017-10-25

Copyright © CAAI Transactions on Intelligent Systems