[1]WANG Junhong,DUAN Bingqian.Research on the SMOTE method based on density[J].CAAI Transactions on Intelligent Systems,2017,12(6):865-872.[doi:10.11992/tis.201706049]
Copy

Research on the SMOTE method based on density

References:
[1] CHARTE F, RIVERA A J, JESUS M J D, et al. Addressing imbalance in multilabel classification: Measures and random resampling algorithms[J]. Neurocomputing, 2015, 163: 3-16
[2] RADIVOJAC P, CHAWLA N V, DUNKER A K, et al. Classification and knowledge discovery in protein databases[J]. Journal of Biomedical Informatics, 2004, 37(4): 224-239
[3] LIU Y, CHAWLA N V, HARPER M P, et al. A study in machine learning from imbalanced data for sentence boundary detection in speech[J]. Computer speech and language, 2006, 20(4): 468-494
[4] KUBAT M, HOLTE R C, MATWIN S. Machine learning for the detection of oil spills in satellite radar images[J]. Machine learning, 1998, 30(2): 195-215
[5] QIAN H, HE G. A survey of class-imbalanced data classification[J]. Computer engineering and science, 2010, 5: 025
[6] 翟云, 王树鹏, 马楠,等. 基于单边选择链和样本分布密度融合机制的非平衡数据挖掘方法[J]. 电子学报, 2014, 42(7): 1311-1319
ZHAI Yun, WANG Shupeng, MA Nan, et al. A data mining method for imbalanced datasets based on one-side link and distribution density of instances[J].Chinise journal of electronics, 2014, 42(7): 1311-1319
[7] CHARTE F, RIVERA A J, JESUS M J D, et al. Addressing imbalance in multilabel classification: Measures and random resampling algorithms[J]. Neurocomputing, 2015, 163: 3-16
[8] GONG C, GU L. A novel smote-based classification approach to online data imbalance problem[J]. Mathematical problems in engineering, 2016, 35: 1-14
[9] BIAN J, PENG X G, WANG Y, et al. An efficient cost-sensitive feature selection using chaos genetic algorithm for class imbalance problem[J]. Mathematical problems in engineering, 2016, 6: 1-9
[10] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16(1): 321-357
[11] 杨智明, 乔立岩, 彭喜元. 基于改进SMOTE的不平衡数据挖掘方法研究[J]. 电子学报, 2007, 35(B12): 22-26
YANG Zhimin, QIAO Liyan, PENG Xiyuan. Research on datamining method for imbalanced dataset based on improved SMOTE[J]. Chinise journal of electronics, 2007, 35(B12): 22-26
[12] HAN H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]//International Conference on Intelligent Computing. Springer Berlin Heidelberg, 2005, 3644(5): 878-887.
[13] HE H, BAI Y, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]//IEEE International Joint Conference on Neural Networks. IEEE Xplore, 2008: 1322-1328.
[14] GRZYMALA-BUSSE J W, STEFANOWSKI J, WILK S. A comparison of two approaches to data mining from imbalanced data[J]. Journal of intelligent manufacturing, 2005, 16(6): 565-573
[15] EZ J, KRAWCZYK B, NIAK M. Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets[J]. Pattern recognition, 2016, 57(C): 164-178
[16] NANNI L, FANTOZZI C, LAZZARINI N. Coupling different methods for overcoming the class imbalance problem[J]. Neurocomputing, 2015, 158(C): 48-61
[17] NAGANJANEYULU S, KUPPA M R. A novel framework for class imbalance learning using intelligent under-sampling[J]. Progress in artificial intelligence, 2013, 2(1): 73-84
[18] ZHANG X, SONG Q, WANG G, et al. A dissimilarity-based imbalance data classification algorithm[J]. Applied intelligence, 2015, 42(3): 544-565
[19] JIANG K, LU J, XIA K. A novel algorithm for imbalance data classification based on genetic algorithm improved SMOTE[J]. Arabian journal for science and engineering, 2016, 41(8): 3255-3266.
[20] XU Y, YANG Z, ZHANG Y, et al. A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification[J]. Knowledge-based systems, 2016, 95: 75-85
[21] ANWAR N, JONES G, GANESH S. Measurement of data complexity for classification problems with unbalanced data[J]. Statistical analysis and data mining the asa data science journal, 2014, 7(3): 194-211.
Similar References:

Memo

-

Last Update: 2018-01-03

Copyright © CAAI Transactions on Intelligent Systems