[1]DOU Linli,ZHAN Zhengran.Constructing concept lattice using bipartite graph[J].CAAI Transactions on Intelligent Systems,2018,13(5):687-692.[doi:10.11992/tis.201703026]
Copy

Constructing concept lattice using bipartite graph

References:
[1] GANTER B, WILLE R. Formal concept analysis:mathematical foundations[M]. FRANZKE C, trans. Berlin Heidelberg:Springer-Verlag, 1999.
[2] WILLE R. Restructuring lattice theory:an approach based on hierarchies of concepts[M]//RIVAL I. Ordered Sets. Berlin Heidelberg:Springer, 1982:445-470.
[3] BELOHLAVEK R, SIGMUND E, ZACPAL J. Evaluation of IPAQ questionnaires supported by formal concept analysis[J]. Information sciences, 2011, 181(10):1774-1786.
[4] NGUYEN T T, HUI S C, CHANG Kuiyu. A lattice-based approach for mathematical search using formal concept analysis[J]. Expert systems with applications, 2012, 39(5):5820-5828.
[5] GODIN R, MISSAOUI R, ALAOUI H. Incremental concept formation algorithms based on Galois (concept) lattices[J]. Computational intelligence, 1995, 11(2):246-267.
[6] HO T B. Incremental conceptual clustering in the frame-work of Galois lattice[C]//LU H, MOTODA H, LIU H. KDD:Techniques and Applications. Singapore:World Scientific, 1997:49-64.
[7] 张文修, 魏玲, 祁建军. 概念格的属性约简理论与方法[J]. 中国科学E辑:信息科学, 2005, 35(6):628-639 ZHANG Wenxiu, WEI Ling, QI Jianjun. Attribute reduction theory and approach to concept lattice[J]. Science in China series E:information sciences, 2005, 35(6):628-639
[8] ELLOUMI S, JAAM J, HASNAH A, et al. A multi-level conceptual data reduction approach based on the Lukasiewicz implication[J]. Information sciences, 2004, 163(4):253-262.
[9] AMILHASTRE J, VILAREM M C, JANSSEN P. Complexity of minimum biclique cover and minimum biclique decomposition for bipartite domino-free graphs[J]. Discrete applied mathematics, 1998, 86(2/3):125-144.
[10] BERRY A, SIGAYRET A. Representing a concept lattice by a graph[J]. Discrete applied mathematics, 2004, 144(1/2):27-42.
[11] BERRY A, MCCONNELL R M, SIGAYRET A, et al. Very fast instances for concept generation[M]//MISSAOUI R, SCHMIDT J. Formal Concept Analysis. Berlin, Heidelberg:Springer, 2006, 3874:119-129.
[12] BERRY A, SANJUAN E, SIGAYRET A. Generalized domination in closure systems[J]. Discrete applied mathematics, 2006, 154(7):1064-1084.
[13] 李立峰, 刘三阳, 罗清君. 弦二部图的概念格表示[J]. 电子学报, 2013, 41(7):1384-1388 LI Lifeng, LIU Sanyang, LUO Qingjun. Representing chordal bipartite graph using concept lattice theory[J]. Acta electronic sinica, 2013, 41(7):1384-1388
[14] 李立峰. 链图的概念格表示[J]. 计算机科学, 2014, 41(2):264-266 LI Lifeng. Chain graph and their concept lattice representation[J]. Computer science, 2014, 41(2):264-266
[15] 张涛, 洪文学, 路静. 形式背景的属性树表示[J]. 系统工程理论与实践, 2011, 31(S2):197-202 ZHANG Tao, HONG Wenxue, LU Jing. Attribute tree representation for formal context[J]. Systems engineering-theory and practice, 2011, 31(S2):197-202
[16] 张涛, 任宏雷. 形式背景的属性拓扑表示[J]. 小型微型计算机系统, 2014, 35(3):590-593 ZHANG Tao, REN Honglei. Attribute topology of formal context[J]. Journal of Chinese computer systems, 2014, 35(3):590-593
[17] 张涛, 路静, 任宏雷. 一种基于树图的属性约简算法[J]. 小型微型计算机系统, 2014, 35(1):177-180 ZHANG Tao, LU Jing, REN Honglei. An algorithm based on free graph for calculation for attribute reduction[J]. Journal of Chinese computer systems, 2014, 35(1):177-180
[18] 黄天民, 徐扬, 赵海良, 等. 格、序引论及其应用[M]. 成都:西南交通大学出版社, 1998.
[19] 王树禾. 图论[M]. 北京:科学出版社, 2009.
[20] 肖位枢. 图论及其算法[M]. 北京:航空工业出版社, 1993.
Similar References:

Memo

-

Last Update: 2018-10-25

Copyright © CAAI Transactions on Intelligent Systems