[1]ZHAO Xiaoxiao,ZHOU Zhiping.A semi-supervised spectral clustering algorithm combined with sparse representation and constraint propagation[J].CAAI Transactions on Intelligent Systems,2018,13(5):855-863.[doi:10.11992/tis.201703013]
Copy

A semi-supervised spectral clustering algorithm combined with sparse representation and constraint propagation

References:
[1] VON Luxburg U. A tutorial on spectral clustering[J]. Statistics and computing, 2007, 17(4):395-416.
[2] SHI Jianbo, MALIK J. Normalized cuts and image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2000, 22(8):888-905.
[3] HU Han, FENG Jianjiang, YU Chuan, et al. Multi-class constrained normalized cut with hard, soft, unary and pairwise priors and its applications to object segmentation[J]. IEEE transactions on image processing, 2013, 22(11):4328-4340.
[4] 刘建伟, 刘媛, 罗雄麟. 半监督学习方法[J]. 计算机学报, 2015, 38(8):1592-1617 LIU Jianwei, LIU Yuan, LUO Xionglin. semi-supervised learning methods[J]. Chinese journal of computers, 2015, 38(8):1592-1617
[5] ALUSH A, FRIEDMAN A, Goldberger J. Pairwise clustering based on the mutual-information criterion[J]. Neurocomputing, 2016, 182:284-293.
[6] FORESTIER G, WEMMERT C. Semi-supervised learning using multiple clusterings with limited labeled data[J]. Information sciences, 2016, 361-362:48-65.
[7] KAMVAR S D, KLEIN D, MANNING C D. Spectral learning[C]//Proceedings of the 18th International Joint Conference on Artificial Intelligence. Acapulco, Mexico, 2003:561-566.
[8] 蒋伟进, 许宇晖, 王欣. 基于谱图和成对约束的主动半监督聚类算法[J]. 控制与决策, 2013, 28(6):904-908 JIANG Weijin, XU Yuhui, WANG Xin. Active semi-supervised clustering algorithm based-on pair-wise constraints[J]. Control and decision, 2013, 28(6):904-908
[9] DING Shifei, JIA Hongjie, ZHANG Liwen, et al. Research of semi-supervised spectral clustering algorithm based on pairwise constraints[J]. Neural computing and applications, 2014, 24(1):211-219.
[10] CUCURINGU M, KOUTIS I, CHAWLA S, et al. Simple and scalable constrained clustering:a generalized spectral method[C]//Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. Cadiz, Spain, 2016:445-454.
[11] WANG Xiang, QIAN Buyue, DAVIDSON I. On constrained spectral clustering and its applications[J]. Data mining and knowledge discovery, 2014, 28(1):1-30.
[12] YU Zhiwen, LUO Peinan, YOU J, et al. Incremental semi-supervised clustering ensemble for high dimensional data clustering[J]. IEEE transactions on knowledge and data engineering, 2016, 28(3):701-714.
[13] LU Zhiwu, PENG Yuxin. Exhaustive and efficient constraint propagation:a graph-based learning approach and its applications[J]. International journal of computer vision, 2013, 103(3):306-325.
[14] CAI Deng, CHEN Xinlei. Large scale spectral clustering via landmark-based sparse representation[J]. IEEE transactions on cybernetics, 2015, 45(8):1669-1680.
[15] SEMERTZIDIS T, RAFAILIDIS D, STRINTZIS M G, et al. Large-scale spectral clustering based on pairwise constraints[J]. Information processing and management, 2015, 51(5):616-624.
Similar References:

Memo

-

Last Update: 2018-10-25

Copyright © CAAI Transactions on Intelligent Systems