[1]MA Zhongli,LIU Quanyong,WU Lingyu,et al.Syncretic representation method for image classification[J].CAAI Transactions on Intelligent Systems,2018,13(2):220-226.[doi:10.11992/tis.201611036]
Copy

Syncretic representation method for image classification

References:
[1] CHEN Jie, SHAN Shiguang, HE Chu, et al. WLD: a robust local image descriptor[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(9): 1705-1720.
[2] XU Yong, ZHANG B, ZHONG Zuofeng. Multiple representations and sparse representation for image classification[J]. Pattern recognition letters, 2015, 68: 9-14.
[3] 祝志远, 张庆辉. 基于视觉感知的人体轮廓捕获及自动调焦[J]. 应用科技, 2016, 43(2): 50-53.
ZHU Zhiyuan, ZHANG Qinghui. An auto focus method for capturing body contours based on visual perception[J]. Applied science and technology, 2016, 6: 50-53.
[4] JIAN M, LAM K M, DONG J. Illumination compensation and enhancement for face recognition[C]//Proceedings of Asia—Pacific Signal and Information Processing Association Annual Summit and Conference. Xi’an: APSIPA, 2011.
[5] HUANG Wei, WANG Xiaohui, MA Yanbo, et al. Robust kernel collaborative representation for face recognition[J]. Optical engineering, 2015, 54(5): 53103.
[6] XU Yong, LI Xuelong, YANG Jian, et al. Integrate the original face image and its mirror image for face recognition[J]. Neurocomputing, 2014, 131: 191-199.
[7] PAYNE T, NICELY M C. Non-rectangular and/or non-orthogonal arrangement of gambling elements in a gaming apparatus[P]. US: US6241607, 2001.
[8] MA Zhongli, LIU Quanyong, HAO Liangliang. Multiple collaborative representations for face recognition[C]//Proceedings of 2016 IEEE International Conference on Mechatronics and Automation. Harbin, China: 2016: 1655-1660.
[9] XU Yong, ZHANG D, YANG Jian, et al. A two-phase test sample sparse representation method for use with face recognition[J]. IEEE transactions on circuits and systems for video technology, 2011, 21(9): 1255-1262.
[10] ZHANG Lei, YANG Meng, FENG Xiangchun. Sparse representation or collaborative representation: which helps face recognition?[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 471-478.
[11] NASEEM I, TOGNERI R, BENNAMOUN M. Robust regression for face recognition[J]. Pattern recognition, 2012, 45(1): 104-118.
[12] WRIGHT J, MA Yi, MAIRAL J, et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
[13] KOH K, KIM S J, BOYD S. An interior-point method for large-scale l1-regularized logistic regression[J]. The journal of machine learning research, 2007, 8: 1519-1555.
[14] PORTUGAL L F, RESENDE M G C, VEIGA G, et al. A truncated primal-infeasible dual-feasible network interior point method[J]. Networks, 2000, 35(2): 91-108.
[15] SMIELIK I, KUHNERT K D. Statistical dependence of pixel intensities for pattern recognition[C]//IEEE International Conference on Industrial Technology. Cape Town, South Africa: IEEE, 2013: 1179-1183.
[16] 吴鹏, 徐洪玲, 宋文龙. 结合小波金字塔的快速NCC图像匹配算法[J]. 哈尔滨工程大学学报, 2017, 38(05): 791-796.
WU Peng, XU Hongling, SONG Wenlong. A fast NCC image matching algorithm based on wavelet pyramid search strategy[J]. Journal of harbin engineering university, 2017, 5(38): 791-796.
[17] SAMARIA F S, HARTER A C. Parameterisation of a stochastic model for human face identification[C]//Proceedings of 1994 IEEE Workshop on Applications of Computer Vision. Sarasota, FL: IEEE, 1994: 138-142.
[18] PHILLIPS P J, MOON H, RIZVI S A, et al. The FERET evaluation methodology for face-recognition algorithms[J]. IEEE transactions on pattern analysis and machine intelligence, 2000, 22(10): 1090-1104.
[19] NENE S A, NAYAR S K, MURASE H. Columbia object image library (COIL-20), CUCS-005-96[R]. 2011.
[20] NENE S A, NAYAR S K, MURASE H. Columbia object image library (COIL-100), CUCS-006-96[R]. Columbia: Columbia University, 1996.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems