[1]HU Minjie,LIN Yaojin,YANG Honghe,et al.Spectral feature selection based on feature correlation[J].CAAI Transactions on Intelligent Systems,2017,12(4):519-525.[doi:10.11992/tis.201609008]
Copy

Spectral feature selection based on feature correlation

References:
[1] LIN Yaojin, Li Jinjin, LIN Peirong, et al. Feature selection via neighborhood multi-granulation fusion[J]. Knowledge-based systems, 2014, 67:162-168.
[2] MANORANJAN D, LIU Huan. Consistency-based search in feature selection[J]. Artificial intelligence, 2003,151(1):155-176.
[3] ZHANG C, ARUN K, CHRISTOPHER R. Materialization optimizations for feature selection workloads[J]. ACM transactions on database systems, 2016, 41(1):2.
[4] 曹晋, 张莉, 李凡长. 一种基于支持向量数据描述的特征选择算法[J]. 智能系统学报, 2015, 10(2):215-220.CAO Jin, ZHANG li, LI Fanchang. A feature selection algorithm based on support vector data description[J]. CAAI transactions on intelligent systems, 2015, 10(2):215-220.
[5] MANORANJAN D, LIU Huan. Feature selection for classification[J]. Intelligent data analysis, 1997, 1(3):131-156.
[6] SUN Yujing, WANG Fei, WANG Bo, et al. Correlation feature selection and mutual information theory based quantitative research on meteorological impact factors of module temperature for solar photovoltaic systems[J]. Energies, 2016, 10(1):7.
[7] CVETKOVIC D M, ROWLINSON P. Spectral graph theory[J]. Topics in algebraic graph theory, 2004:88-112.
[8] ZHAO Zheng, LIU Huan. Spectral feature selection for supervised and unsupervised learning[C]//Proceedings of the 24th international conference on Machine learning. ACM, 2007:1151-1157.
[9] ZHAO Zhou, HE Xiaofei, CAI Deng, et al. Graph regularized feature selection with data reconstruction[J]. IEEE transactions on knowledge and data engineering, 2016, 28(3):689-700.
[10] HE Xiaofei, CAI Deng, NIYONGI P. Laplacian score for feature selection[M].Cambridge:MIT Press, MA, 2005, 17:507-514.
[11] BELABBAS M A, WOLFE P J. Spectral method in machine learning and new strategies for very large datasets[J]. Proceedings of the national academy of sciences, 2009, 106(2):369-374.
[12] WANG Xiaodong, ZHANG Xu, ZENG Zhiqiang, et al. Unsupervised spectral feature selection with l 1-norm graph[J]. Neurocomputing, 2016, 200:47-54.
[13] 边肇祺,张学工.模式识别[M]. 2版. 北京:清华大学出版社, 2000.
[14] HALL M A. Correlation-based feature selection for discrete and numeric class machine learning[C]//the 17th International Conference on Machine Learning. San Francisco:Morgan Kaufmann, 2000:359-366.
[15] ANDREAS W, ANDREAS P. Attacks on stegan ographic systems[M]. Heidelberg, Berlin:Springer-Verlag, 2000:61-76.
[16] YU Lei, LIU Huan. Efficient feature selection via analysis of relevance and redundancy[J]. Journal of machine learning research, 2004, 5(1):1205-1224.
[17] HU Qinghua, YU Daren, LIU Jinfu, et al. Neighborhood rough set based heterogeneous feature subset selection[J]. Information sciences, 2008, 178(18):3577-3594.
[18] CRAMMER K, GILAD-BACHRACH R, NAVOT A. Margin analysis of the lvq algorithm[C]//Advances in Neural Information Processing Systems. 2002, 14:462-469.
[19] FRIEDMAN M, A comparison of alternative tests of significance for the problem of m rankings[J]. The annals of mathematical statistics, 1940, 11(1):86-92.
[20] DUNN O J.Multiple comparisons among means[J]. Journal of the american statistical association, 1961, 56(293):52-64.
Similar References:

Memo

-

Last Update: 2017-08-25

Copyright © CAAI Transactions on Intelligent Systems