[1]QIAO Junfei,AN Ru,HAN Honggui.Design of self-organizing RBF neural network based on relative contribution index[J].CAAI Transactions on Intelligent Systems,2018,13(2):159-167.[doi:10.11992/tis.201608009]
Copy

Design of self-organizing RBF neural network based on relative contribution index

References:
[1] QIAO J F, ZHANG Z Z, BO Y C. An online self-adaptive modular neural network for time-varying systems[J]. Neurocomputing, 2014, 125: 7-16.
[2] 韩红桂, 李淼, 乔俊飞. 基于模型输出敏感度分析的动态神经网络结构设计[J]. 电子学报, 2010, 38(3): 731-736.
HAN Honggui, LI Miao, Qiao Junfei. Design of dynamic neural network based on the sensitivity analysis of model output[J]. Acta electronica sinica, 2010, 38(3): 731-736.
[3] PLATT J. A resource-allocating network for function interpolation[J]. Neural computation, 1991, 3(2): 213-225.
[4] LU Y G, SUNDARARAJAN N, SARATCHANDRAN P. A sequential learning scheme for function approximation using minimal radial basis function neural networks[J]. Neural computation, 1997, 9(2): 461-478.
[5] PANCHAPAKESAN C, PALANISWAMI M, RALPH D, et al. Effects of moving the center’s in an RBF network[J]. IEEE transactions on neural networks, 2002, 13(6): 1299-1307.
[6] HUANG G B, SARATCHANDRAN P, SUNDARARAJAN N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation[J]. IEEE transactions on neural networks, 2005, 16(1): 57-67.
[7] GONZALEZ J, ROJAS I, ORTEGA J, et al. Multi-objective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation[J]. IEEE transactions on neural networks, 2003, 14(6): 1478-1495.
[8] FENG H M. Self-generation RBFNs using evolutional PSO learning[J]. Neurocomputing, 2006, 70(1): 241-251.
[9] HAO C, YU G, XIA H. Online modeling with tunable RBF network[J]. IEEE transactions on cybernetics, 2013, 43(3): 935-947.
[10] LIAN J M, LEE Y G, SCOTT D, SUDHOFF, et al. Self-organizing radial basis function network for real-time approximation of continuous-time dynamical systems[J]. IEEE transactions on neural networks, 2008, 19(3): 460-474.
[11] YU H, REINER P D, XIE T T, et al. An incremental design of radial basis function networks[J]. IEEe transactions on neural networks and learning systems, 2014, 25(10): 1793-1803.
[12] CONSTANTINOPOULO C, LⅡKAS A. An incremental training method for the probabilistic RBF network[J]. IEEE transactions on neural networks, 2006, 17(4): 966-974.
[13] CHEN S, HANZO L, TAN S. Symmetric complex-valued RBF receiver for multiple-antenna-aided wireless systems[J]. IEEe transactions on neural networks, 2008, 19(9): 1659-1665.
[14] 王晓丽, 黄蕾, 杨鹏, 等. 动态RBF神经网络在浮选过程模型失配中的应用[J]. 化工学报, 2016, 3(67): 897-902.
WANG Xiaoli, HUANG Lei, YANG Peng, et al. Dynamic RBF neural networks for model mismatch problem and its application in flotation process[J]. CIESC journal, 2016: 3(67): 897-902.
[15] WILAMOWSKI B M, YU H. Improved computation for Levenberg-Marquardt training[J]. IEEE transactions on neural networks, 2010, 21(6): 930-937.
[16] MA C, JIANG L. Some research on Levenberg-Marquardt method for the nonlinear equations[J]. Applied mathematics and computation, 2007, 184(2): 1032-1040.
[17] XIE T T, YU H, HEWLETT J, et al. Fast and efficient second-order method for training radial basis function networks[J]. IEEE transactions on neural networks and learning systems, 2012, 23(4): 609-619.
[18] QIAO J F, HAN H G. Identification and modeling of nonlinear dynamical systems using a novel self-organizing RBF-based approach[J]. Automatica, 2012, 48(8): 1729-1734.
[19] CHEN C, WANG F Y. A self-organizing neuro-fuzzy network based on first order effect sensitivity analysis[J]. Neurocomputing, 2013, 118: 21-32.
[20] HAN H G, CHEN Q L, QIAO J F. An efficient self-organizing RBF neural network for water quality prediction[J]. Neural networks the official journal of the international neural network society, 2011, 24(7): 717-25.
[21] HUANG G B, SARATCHANDRAN P, SUNDARARAJAN N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks[J]. IEEE transactions on systems, man, and cybernetics, Part B: (Cybernetics), 2004, 34(6): 2284-2292.
[22] CHO K B, WANG B Y. Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction[J]. Fuzzy sets and systems, 1996, 83(3): 325-339.
[23] EBADZADEH M M, SALIMI-BADR A. CFNN: correlated fuzzy neural network[J]. Neurocomputing, 2015, 148: 430-444.
[24] An R, Li W J, Han H G, et al. An improved Levenberg-Marquardt algorithm with adaptive learning rate for RBF neural network[C]//IEEE Control Conference, [s.l.], 2016: 3630-3635.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems