[1]LIU Wei,LIU Shang,BAI Runcai,et al.Reducing training times in neural network classifiers by using dynamic data reduction[J].CAAI Transactions on Intelligent Systems,2017,12(2):2258-2265.[doi:10.11992/tis.201605031]
Copy

Reducing training times in neural network classifiers by using dynamic data reduction

References:
[1] 毛勇. 基于支持向量机的特征选择方法的研究与应用[D]. 杭州: 浙江大学, 2006. MAO Yong. A study on feature selection algorithms based on support vector machine and its application[D]. Hangzhou: Zhejiang University, 2006.
[2] 覃政仁, 吴渝, 王国胤. 一种基于Rough Set的海量数据分割算法[J]. 模式识别与人工智能, 2006, 19(2): 249-256.QIN Zhengren, WU Yu, WANG Guoyin. A partition algorithm for huge data sets based on rough set[J]. Pattern recognition and artificial intelligence, 2006, 19(2): 249-256.
[3] ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley interdisciplinary reviews: computational statistics, 2010, 2(4): 433-459.
[4] RIFAI S, VINCENT P, MULLER X, et al. Contractive auto-encoders: explicit invariance during feature extraction[C]//Proceedings of the 28th International Conference on Machine Learning. Bellevue, WA, USA: ICML, 2011.
[5] 周玉, 朱安福, 周林, 等. 一种神经网络分类器样本数据选择方法[J]. 华中科技大学学报:自然科学版, 2012, 40(6): 39-43. ZHOU Yu, ZHU Anfu, ZHOU Lin, et al. Sample data selection method for neural network classifier[J]. Journal of Huazhong university of science and technology: natural science edition, 2012, 40(6): 39-43.
[6] 郝红卫, 蒋蓉蓉. 基于最近邻规则的神经网络训练样本选择方法[J]. 自动化学报, 2007, 33(12): 1247-1251. HAO Hongwei, JIANG Rongrong. Training sample selection method for neural networks based on nearest neighbor rule[J]. Acta automatica sinica, 2007, 33(12): 1247-1251.
[7] HARA K, NAKAYAMA K. A training method with small computation for classification[C]//Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. Como, Italy: IEEE, 2000: 543-548.
[8] 邓乃扬, 田英杰. 数据挖掘中的新方法——支持向量机[M]. 北京: 科学出版社, 2004.
[9] 刘刚, 张洪刚, 郭军. 不同训练样本对识别系统的影响[J]. 计算机学报, 2005, 28(11): 1923-1928. LIU Gang, ZHANG Honggang, GUO Jun. The influence of different training samples to recognition system[J]. Chinese journal of computers, 2005, 28(11): 1923-1928.
[10] SCHAPIRE R E, SINGER Y. Improved boosting algorithms using confidence-rated predictions[J]. Machine learning, 1999, 37(3): 297-336.
[11] 韦岗, 贺前华. 神经网络模型学习及应用[M]. 北京: 电子工业出版社, 1994.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems