[1]JIANG Ying,WANG Yanjiang.Application of REM memory model in image recognition and classification[J].CAAI Transactions on Intelligent Systems,2017,12(3):310-317.[doi:10.11992/tis.201605010]
Copy

Application of REM memory model in image recognition and classification

References:
[1] XU Y, ZHANG B, ZHONG Z. Multiple representations and sparse representation for image classification[J]. Pattern recognition letters, 2015, 68: 9-14.
[2] HELLMAN M E. The nearest neighbor classification rule with a reject option[J]. IEEE transactions on systems science and cybernetics, 1970, 6(3): 179-185.
[3] DENOEUX T. A neural network classifier based on Dempster-Shafer theory[J]. IEEE transactions on systems man and cybernetics-Part A systems and humans, 2010, 30(2): 131-150.
[4] DAVTALAB R, DEZFOULIAN M H, MANSOORIZADEH M. Multi-level fuzzy min-max neural network classifier[J]. IEEE transactions on neural networks and learning systems, 2014, 25(3): 470-482.
[5] CHANG C C, LIN C J. LIBSVM: a library for support vector machines[J].ACM transactions on intelligent systems and technology, 2011, 2(3): 389-396.
[6] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer science, 2014.
[7] HUANG G B. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle[J]. Cognitive computation, 2015, 7(3) 263-278.
[8] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE transactions on pattern analysis and machine intelligence, 2008, 31(2) 210-227.
[9] ZHANG L, YANG M, FENG X. Sparse representation or collaborative representation: Which helps face recognition[C]//International Conference on Computer Vision, 2011: 471-478.
[10] YANG M, ZHANG L YANG J, ZHANG D. Robust sparse coding for face recognition[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2011, 42(7): 625-632.
[11] SCHOLKOPF B, PLATT J, HOFMANN T. Sparse representation for signal classification[J]. Advances in neural information processing systems, 2007, 19: 609-616.
[12] WANG Y. Formal description of the cognitive process of memorization[M]//Transactions on Computational Science V. Springer Berlin Heidelberg, 2009: 81-98.
[13] WANG Y, CHIEW V. On the cognitive process of human problem solving[J]. Cognitive systems research, 2010, 11(1): 81-92.
[14] MURDOCK B B. A theory of the storage and retrieval of item and associative information[J]. Psychological review, 1982, 89(6): 609-626.
[15] RAAIJMAKERS J G W, SHIFFRIN R M. SAM: a theory of probabilistic search of associative memory[J]. Psychology of learning and motivation, 1980, 14: 207-262.
[16] HINTZMAN D L. Judgments of frequency and recognition memory in a multiple-trace model[J]. Psychological review, 1988, 95(4): 528-551.
[17] SHIFFRIN R M, STEYVERS M. A model for recognition memory: REM-retrieving effectively from memory[J]. Psychonomic bulletin and review, 1997, 4(2): 145-166.
[18] STARN J J, WHITE C N, RATCLIFF R. A direct test of the differentiation mechanism: REM, BCDMEM, and the strength-based mirror effect in recognition memory[J]. Journal of memory and language, 2010, 63(1): 18-34.
[19] COX G E, SHIFFRIN R M. Criterion Setting and the dynamics of recognition memory[J]. Topics in cognitive science, 2012, 4(1): 135-150.
[20] CRISS A H,MCCLELLAND J L. Differentiating the differentiation models: a comparison of the retrieving effectively from memory model (REM) and the subjective likelihood model (SLiM)[J]. Journal of memory and language, 2006, 55(4): 447-460.
[21] MONTENEGRO M, MYUNG J I, PITT M A. Analytical expressions for the REM model of recognition memory[J]. Journal of mathematical psychology, 2014, 60(3): 23-28.
[22] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition. IEEE Computer Society Conference, on, 2005: 886-893.
[23] OJALA T, HARWOOD I. A Comparative study of texture measures with classification based on feature distributions[J]. Pattern recognition, 1996, 29(1): 51-59.
[24] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2):91-110.
[25] BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[J]. Computer vision and image understanding, 2006, 110(3): 404-417.
[26] PIETIKAINEN M, OJALA T, XU Z. Rotation-invariant texture classification using feature distributions[J]. Pattern recognition, 2000, 33(1): 43-52.
[27] OJALA T, PIETIKAINEN, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE transactions on pattern analysis and machine intelligence, 2002, 24(7): 971-987.
[28] NENE A S, NAYAR S K, MURASE H. Columbia object image library (COIL-20)[R]. CUCS-005-96, 1996.
[29] GRIFFIN G, HOLUB A, PERONA P. Caltech-256 object category dataset[R]. Pasadena: California Institute of Technology, 2007.
Similar References:

Memo

-

Last Update: 2017-06-25

Copyright © CAAI Transactions on Intelligent Systems