[1]XIA Fei,MA Xi,ZHANG Hao,et al.Application of improved D-S evidence theory in fault diagnosis of lithium batteries in electric vehicles[J].CAAI Transactions on Intelligent Systems,2017,12(4):526-537.[doi:10.11992/tis.201605001]
Copy

Application of improved D-S evidence theory in fault diagnosis of lithium batteries in electric vehicles

References:
[1] 王一卉,姜长泓.模糊神经网络专家系统在动力锂电池组故障诊断中的应用[J]. 电测与仪表, 2015, 52(14):118-123. WANG Yihui, JIANG Changhong. Fuzzy neural network ex-pert system for fault diagnosis in power lithium battery appli-cation[J]. Electrical measurement & instrumentation, 2015, 52(14):118-123.
[2] 卿平勇.混合动力汽车电池管理系统故障诊断与健康管理研究[D].北京:北京理工大学,2015. QING Pingyong. Reserch on fault diagnosis and health man-agement of battery management system for hybrid electric ve-hicle[D].Beijing:Beijing Institute of Technology,2015.
[3] 檀斐.车用动力锂离子电池故障诊断研究与实现[D].北京:北京理工大,2015. TAN Fei. Fault diagnosis and implementation of electric ve-hicle lithiumion battery system[D].Beijing:Beijing Institute of Technology,2015.
[4] 付家才,万遂.基于D-S证据理论和BP神经网络的多传感器信息融合[J].自动化与仪器仪表, 2011, 1(153):22-24. FUJiacai,WAN Sui. Multisensor information fusion based on D-S evidence theory and BP neural network[J]. Automation & instrumentation, 2011, 1(153):22-24.
[5] 程加堂,段志梅.基于QPSO-BP和改进D-S的水电机组振动故障诊断[J].电力系统保护与控制, 2015,43(19):66-71. CHENG Jiatang, DUAN Zhimei, AI Li, et al. Vibration fault diagnosis for hydroelectric generating unit based on QPSO-BP and modified D-S theory[J]. Power system pro-tection and control, 2015, 43(19):66-71.
[6] 徐春梅,彭道刚,张悦. 基于集成法的汽轮机组智能故障诊断仿真研究[J]. 计算机仿真, 2015(07):408-412. XU Chunmei,PENG Daogang,ZHANG Yue. simulation re-search on intelligent fault diagnosis for turbine generator unit based on integrated method[J]. Computer simulation, 2015(07):408-412.
[7] 白剑林,王煜.一种解决D-S理论证据冲突的有效方法[J].系统工程与电子技术,2009,31(9):2106-2109. BAI Jianlin, WANG Yu. Efficient combination approach to conflict evidence for D-S theory[J]. Systems engineering and electronics, 2009,31(9):2106-2109.
[8] 韩德强,邓勇,韩崇昭,等. 基于证据距离与不确定度的证据组合方法[J]. 红外与毫米波学报, 2011, 30(5):396-400. HAN Deqiang, DENG Yong, HAN Chongzhao, et al. Weighted evidence combination based on distance of evidence and uncertainty measure[J]. Journal of infrared millim waves, 2011, 30(5):396-400.
[9] 郭雷雷.智能环境下基于视频多特征融合的单说话人跟踪方法研究[D].兰州:兰州理工大学,2014. GUO Leilei. The research of single speaker tracking algorithm based on video multi-feature fusion in meeting room environment[D].Lanzhou:Lanzhou university of tech-nology, 2014.
[10] 牛强军,黄家成.基于改进的D-S决策融合的航电设备故障诊断[J]. 计算机工程与设计, 2015, 36(8):2255-2259. NIU Qiangjun, HUANG Jiacheng. Avionics equipment fault diagnosis based onimproved dempster-shafe decision fusion method[J]. Computer engineering and design, 2015, 36(8):2255-2259.
[11] Mengmeng Ma, Jiyao An.Combination of evidence with dif-ferent weighting factors:a novel probabilistic-based dissim-ilarity measure approach[J]. Journal of sensors, 2015:1-9.
[12] 费翔,周健.一种处理冲突证据的D-S证据权重计算方法[J]. 计算机工程, 2016, 42(2):142-145. FEI Xiang, ZHOU Jian. A D-S evidence weight computing method for conflict evidence[J]. Computer engineering, 2016, 42(2):142-145.
[13] 胡海亮,钟求喜.基于证据可信度的D-S理论改进方法[J].计算机应用与软件, 2016, 33(6):13-19. HU Hailiang, ZHONG Qiuxi. An improved method for d-s theory based on evidence credibility[J]. Computer applica-tions and software, 2016, 33(6):13-19.
[14] RONALD R Y. On the dempster-shafer framework and new combination rules[J]. Information sciences (S1007-7634), 1987, 41(2):93-137.
[15] 孙全,叶秀清,顾伟康. 一种新的基于证据理论的合成公式[J]. 电子学报, 2000(08):117-119. SUN Quan, YE Xiuqing, GU Weikang. A new combination rules of evidence theory[J]. Acta electronica sinica, 2000(08):117-119.
[16] 李弼程, 王波, 魏俊,等. 一种有效的证据理论合成公式[J]. 数据采集与处理, 2002, 17(1):33-36. LI Bicheng, WANG Bo, WEI Jun,et al. An efficient com-bination rule of evidence theory[J]. Journal of data acqui-sition & processing, 2002, 17(1):33-36.
[17] 王力.基于DS证据理论的多传感器数据融合算法研究与应用[D].太原:太原理工大学,2015. WANG li. Research and application of multi-sensor fusion algorithm based on DS evidence theory[D]. Taiyuan:Taiyuan University of Technology, 2015.
[18] ZHAO Y, JIA R, LIU C. An evaluation method of under-water ocean environment safety situation based on d-s evi-dence theory[J]. Advances in meteorology, 2015, 2015(5):1-8.
[19] 吴强,姜礼平,季傲.基于模糊集和D-S证据理论的空中作战目标识别[J].指挥控制与仿真, 2015, 36(4):54-58. WU Qiang, JIANG Liping, JI Ao. Aircraft target identification based on fuzzy sets and d-s evidence theory in air operation[J]. Command control & simulation, 2015, 36(4):54-58.
[20] 吕雪婷,贾瑞生, 孙惠惠.证据冲突下D-S融合算法的改进[J].系统仿真学报,2013, 25(3):571-574. LV Xueting, JIA Ruisheng, SUN Huihui. Improvement of D-S fusion algorithm under evidence conflict[J]. Journal of system simulation, 2013, 25(3):571-574.
[21] 叶彦斐,郑源.基于证据修正及冲突分配的新证据推理规则[J].仪表技术与传感器, 2014, 12:118-121. YE Yanfei, ZHENG Yuan. New evidence reasoning rule based on eveidence modifying and conficts allocating[J]. Instrument technique and sensor, 2014, 12:118-121.
[22] 曹洁,郭雷雷.一种基于局部冲突分配的证据组合规则[J].计算机应用研究, 2013, 30(7):2032-2035. CAO Jie, GUO Leilei. Evidence combination rule based on local conflict distribution strategy[J]. Application research of computers, 2013, 30(7):2032-2035.
[23] 李军伟,程咏梅, 潘泉,等.基于焦元距离的冲突证据组合规则[J].系统工程与电子技术, 2010, 32(11):2360-2366. LI Junwei, CHENG Yongmei, PAN Quan, et al. Combina-tion rule of conflicting evidence based on focal element dis-tance[J]. Systems engineering and electronics, 2010, 32(11):2360-2366.
[24] DUBOIS D,PRADE H. A set-theoretic view on belief func-tions:logic operations and approximations by fuzzy sets[J]. International journal of general syst, 1986, 12:193-226.
[25] 葛哲学,孙志强.神经网络理论与MATLABR2007实现[M]. 北京:电子工业出版社,2007:240.
Similar References:

Memo

-

Last Update: 2017-08-25

Copyright © CAAI Transactions on Intelligent Systems