[1]WANG Pei,XIAN Yantuan,GUO Jianyi,et al.A novel method using word vector and graphical models for entity disambiguation in specific topic domains[J].CAAI Transactions on Intelligent Systems,2016,11(3):366-374.[doi:10.11992/tis.201603044]
Copy

A novel method using word vector and graphical models for entity disambiguation in specific topic domains

References:
[1] 赵军. 命名实体识别、排歧和跨语言关联[J]. 中文信息学报, 2009, 23(2): 3-17.ZHAO Jun. A survey on named entity recognition, disambiguation and cross-lingual coreference resolution[J]. Journal of Chinese information processing, 2009, 23(2): 3-17.
[2] 赵军, 刘康, 周光有, 等. 开放式文本信息抽取[J]. 中文信息学报, 2011, 25(6): 98-110. ZHAO Jun, LIU Kang, ZHOU Guangyou, et al. Open information extraction[J]. Journal of Chinese information processing, 2011, 25(6): 98-110.
[3] BUNESCU R C, PASCA M. Using encyclopedic knowledge for named entity disambiguation[C]//Proceedings of the 11st conference of the european chapter of the association for computational linguistics. Trento, Italy, 2006: 9-16.
[4] BAGGA A, BALDWIN B. Entity-based cross-document coreferencing using the vector space model[C]//Proceedings of the 17th international conference on computational linguistics-volume 1. association for computational linguistics. Montreal, Canada, 1998: 79-85.
[5] MANN G S, YAROWSKY D. Unsupervised personal name disambiguation[C]//Proceedings of the 7th conference on natural language learning at HLT-NAACL 2003-volume 4. Sapporo, Japan, 2003: 33-40.
[6] HAN Xianpei, SUN Le. A generative entity-mention model for linking entities with knowledge base[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. Stroudsburg, PA, USA, 2011: 945-954.
[7] FAN Xiaoming, WANG Jianyong, PU Xu, et al. On graph-based name disambiguation[J]. Journal of data and information quality (JDIQ), 2011, 2(2): 10.
[8] 怀宝兴, 宝腾飞, 祝恒书, 等. 一种基于概率主题模型的命名实体链接方法[J]. 软件学报, 2014, 25(9): 2076-2087. HUAI Baoxing, BAO Tengfei, ZHU Hengshu, et al. Topic modeling approach to named entity linking[J]. Journal of software, 2014, 25(9): 2076-2087.
[9] 宁博, 张菲菲. 基于异构知识库的命名实体消歧[J]. 西安邮电大学学报, 2014, 19(4): 70-76. NING Bo, ZHANG Feifei. Named entity disambiguation based on heterogeneous knowledge base[J]. Journal of Xi’an university of posts and telecommunications, 2014, 19(4): 70-76.
[10] 朱敏, 贾真, 左玲, 等. 中文微博实体链接研究[J]. 北京大学学报:自然科学版, 2014, 50(1): 73-78. ZHU Min, JIA Zhen, ZUO Ling, et al. Research on entity linking of chinese micro blog[J]. Acta scientiarum naturalium universitatis pekinensis, 2014, 50(1): 73-78.
[11] HINTON G E. Learning distributed representations of concepts[C]//Proceedings of the 8th annual conference of the cognitive science society. Amherst, USA, 1986: 1-12.
[12] 张剑, 屈丹, 李真. 基于词向量特征的循环神经网络语言模型[J]. 模式识别与人工智能, 2015, 28(4): 299-305.ZHANG Jian, QU Dan, LI Zhen. Recurrent neural network language model based on word vector features[J]. Pattern recognition and artificial intelligence, 2015, 28(4): 299-305.
[13] MIKOLOV T, CHEN Kai, CORRADO G, et al. Efficient estimation of word representations in vector space[C]//Proceedings of the International Conference on Learning Representations. Scottsdale, Arizona, 2013: 1388-1429.
[14] MIHALCEA R, TARAU P. TextRank: bringing order into texts[C]//Proceedings of EMNLP-04and the 2004 Conference on Empirical Methods in Natural Language Processing. Spain, 2004: 404-411.
[15] PEARSON K. The problem of the random walk[J]. Nature, 1905, 72(1865): 294.
[16] 郑伟, 王朝坤, 刘璋, 等. 一种基于随机游走模型的多标签分类算法[J]. 计算机学报, 2010, 33(8): 1418-1426. ZHENG Wei, WANG Chaokun, LIU Zhang, et al. A multi-label classification algorithm based on random walk model[J]. Chinese journal of computers, 2010, 33(8): 1418-1426.
[17] SZUMMER M, JAAKKOLA T. Partially labeled classification with Markov random walks[C]//Advances in neural information processing systems (NIPS). Cambridge, 2002, 14: 945-952.
[18] ZHOU Dengyong. Learning from labeled and unlabeled data on a directed graph[C]//Proceedings of the 22nd international conference on machine learning. New York, USA, 2005: 1036-1043.
[19] TISHBY N, SLONIM N. Data clustering by Markovian relaxation and the information bottleneck method[C]//Proceedings of Neural Information Processing Systems. Vancouver, Canadian, 2000: 640-646.
[20] HAREL D, KOREN Y. On clustering using random walks[M]//HARIHARAN R, VINAY V, MUKUND M. Foundations of software technology and theoretical computer science. Berlin Heidelberg: Springer, 2001: 18-41.
[21] LUXBURG U V. A tutorial on spectral clustering[J]. Statistics and computing, 2007, 17(4): 395-416.
[22] GRADY L. Random walks for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(11): 1768-1783.
[23] GORI M, MAGGINI M, SARTI L. Exact and approximate graph matching using random walks.[J]. IEEE transactions on Pattern analysis and machine intelligence, 2005, 27(7): 1100-1111.
[24] KONDOR R I, LAFFERTY J. Diffusion kernels on graphs and other discrete structures[C]//Proceedings of the 19th international conference on machine learning. Sydney, Australia, 2002: 315-322.
[25] BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[R]. Chicago, USA: University of Chicago, 2002.
[26] LAFFERTY J, LEBANON G. Information diffusion kernels[C]//Advances in neural information processing systems. Cambridge, 2002: 375-382.
[27] SMOLA A J, KONDOR R. Kernels and regularization on graphs[M]//Learning theory and kernel machines. Berlin Heidelberg: Springer, 2003: 144-158.
[28] HU Jian, WANG Gang, LOCHOVSKY F, et al. Understanding user’s query intent with Wikipedia[C]//Proceedings of the 18th International Conference on World Wide Web. Beijing, China, 2009: 471-480.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems