[1]LIU Jingwei,ZHAO Hui,ZHOU Rui,et al.Improvement and comparison research between intelligent control systems based on rule based reasoning and neural computation AI methods[J].CAAI Transactions on Intelligent Systems,2017,12(6):823-832.[doi:10.11992/tis.201602015]
Copy

Improvement and comparison research between intelligent control systems based on rule based reasoning and neural computation AI methods

References:
[1] VOLODYMYR M, KORAY K, DAVID S. Human-level control through deep reinforcement learning [J]. Nature, 2015, 518, 529-533.
[2] RIEDMILLER M, GABEL T, HAFNER R, LANGE S. Reinforcement learning for robot soccer[J]. Robots. 2009, 27: 55-73.
[3] DIUK C, COHENA, LITTMAN, M L. An object-oriented representation for efficient reinforcement learning[J]. Mach learn, 2008, 240-247.
[4] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2016, 12(21): 436-444.
[5] HINTON G. Learning multiple layers of representation. Trends in cognitive sciences[J]. 2007, 11(5): 428-434.
[6] KRIZHEVSKY A, SUTSKEVER I, HINTON GE. Imagenet classification with deep convolutional neural networks[J]. Neural information processing systems foundation. 2012, 47: 777-780.
[7] FARABET C, COUPRIE C, NAJMAN L, LECUN Y. Learning hierarchical features for scene labeling[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(8): 1915-1929.
[8] SUSANTO-LEE R, FERNANDO T, SREERAM V. Simulation of fuzzy-modified expert PID algorithms for blood glucose control[C]//10th International Conference on Control, Automation, Robotics and Vision. Hanoi, Vietnam, 2008: 1583-1589.
[9] XUE Ping, WANG Haichao, HOU Juanjuan. Based on the fuzzy PID brushless DC motor control system design[C]//International Conference on Measurement, Information and Control. Harbin, China, 2012: 703-706.
[10] OU Kai, WANG Yaxiong, LI Zhenzhe. Feedforward fuzzy-PID control for air flow regulation of PEM fuel cell system [J]. International journal of hydrogen energy, 2015, 40(35): 11686-11695.
[11] SHI Hongbo, HUANG Chuang. A BP wavelet neural network structure for process monitoring and fault detection [C]//The Sixth World Congress on Intelligent Control and Automation. Dalian, China, 2006(2): 5675-5681.
[12] SHARIFIAN M B B; MIRLO A, TAVOOSI J, SABAHI M. Self-adaptive RBF neural network PID controller in linear elevator[C]//International Conference on Electrical Machines and Systems. Beijing, China, 2011: 1-4.
[13] 赵新华, 王璞, 陈晓红. 智能投球机器人模糊PID控制[J]. 智能系统学报, 2015, 10(3): 399-406.
ZHAO Xinhua, WANG Pu, CHEN Xiaohong. Intelligent pitching robot based on fuzzy PID control[J]. CAAI transactions on intelligent systems, 2015, 10(3): 399-406.
[14] 刘经纬, 王普, 等. 专家模糊增量式自适应的参数在线整定优化系统及方法[P]. 201110023946.6, 2012-11-07.
[15] 王普, 刘经纬, 等. 自适应小波神经网络异常检测故障诊断分类系统及方法[P]. 201110023943.2, 2012-08-30.
[16] SHARIFIAN M B B, MIRLO A, TAVOOSI J, SABAHI M. Self-adaptive RBF neural network PID controller in linear elevator[C]//International Conference on Electrical Machines and Systems. Beijing, China, 2011: 1-4.
[17] NIE Yanmin, HE Zhiqiang. Optimization of the main steam temperature PID parameters based on improve BP neural network[C]//International Conference on Simulation and Modeling Methodologies, Technologies and Applications. Rome, Italy, 2015: 113-116.
[18] CHEN Zhe, FENG Tianjin, et al. The application of wavelet neural network for time series predictionand system modeling based on multiresolution learning[C]//International Conference on System, Man and Cybernetics. Tokyo, Japan, 1999(1): 425-430.
[19] LOUSSIFI H, NOURI K, BRAIEK N B. A new efficient hybrid intelligent method for nonlinear dynamical systems identification: The Wavelet Kernel Fuzzy Neural Network[J]. Communications in Nonlinear Science and Numerical Simulation. 2016, 32: 10-30.
[20] SILVA G J, DATTA A, BHATTACHARYYA S P. New results on the synthesis of PID controllers[J]. IEEE trans on automatic sontrol. 2002, 47(2): 241-252.
Similar References:

Memo

-

Last Update: 2018-01-03

Copyright © CAAI Transactions on Intelligent Systems