[1]ZOU Li,TAN Xuewei,WEN Xin,et al.Linguistic truth-valued intuitionistic fuzzy reasoning with truth-valued qualifications[J].CAAI Transactions on Intelligent Systems,2015,10(5):797-802.[doi:10.11992/tis.201410006]
Copy

Linguistic truth-valued intuitionistic fuzzy reasoning with truth-valued qualifications

References:
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[2] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[3] ATANASSOV K T. More on intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1989, 33(1):37-45.
[4] XU Yang, QIN Keyun, LIN Jun, et al. L-valued propositional logic Lvpl[J]. Information Sciences, 1999, 114(1-4):205-235.
[5] 徐扬. 格蕴涵代数[J]. 西南交通大学学报, 1993(1):20-27.XU Yang. Lattice implication algebra[J]. Journal of Southwest Jiaotong University, 1993(1):20-27.
[6] 夏佩伦. 不确定性推理方法研究[J]. 火力与指挥控制, 2010, 35(11):87-91. XIA Peilun. Comments on techniques for inference with uncertainty[J]. Fire Control & Command Control, 2010, 35(11):87-91.
[7] 陈图云, 孟艳平. 模糊集相似度限定推理方法[J]. 工程数学学报, 2005, 22(2):346-348. CHEN Tuyun, MENG Yanping. The reasoning method by fuzzy set similarity degree[J]. Chinese Journal of Engineering Mathematics, 2005, 22(2):346-348.
[8] 雷英杰, 王宝树, 路艳丽. 基于直觉模糊逻辑的近似推理方法[J]. 控制与决策, 2006, 21(3):305-310. LEI Yingjie, WANG Baoshu, LU Yanli. Approximate rea-soning method based on intuitionistic fuzzy logic[J]. Control and Decision, 2006, 21(3):305-310.
[9] 雷英杰, 汪竞宇, 吉波, 等. 真值限定的直觉模糊推理方法[J]. 系统工程与电子技术, 2006, 28(2):234-236.LEI Yingjie, WANG Jingyu, JI Bo, et al. Technique for in-tuitionistic fuzzy reasoning with truth qualifications[J]. Sys-tems Engineering and Electronics, 2006, 28(2):234-236.
[10] 王毅, 雷英杰. 基于直觉模糊逻辑的插值推理方法[J]. 系统工程与电子技术, 2008, 30(10):1944-1948. WANG Yi, LEI Yingjie. Techniques for interpolation rea-soning based on intuitional fuzzy logic[J]. Systems Engineering and Electronics, 2008, 30(10):1944-1948.
[11] 赖家骏, 徐扬. 基于语言真值格值一阶逻辑的不确定性推理的语法[J]. 模糊系统与数学, 2011, 25(2):1-60. LAI Jiajun, XU Yang. Syntax of uncertainty reasoning based on linguistic truth-valued lattice value first-order logic[J]. Fuzzy Systems and Mathematics, 2011, 25(2):1-6.
[12] 杨丽, 徐扬. 基于概念格的语言真值不确定性推理[J]. 计算机应用研究, 2009, 26(2):553-554, 576. YANG Li, XU Yang. Linguistic truth-valued uncertainty reasoning based on concept lattice[J]. Application Research of Computers, 2009, 26(2):553-554, 576.
[13] 邹丽, 谭雪微, 张云霞. 语言真值直觉模糊逻辑的知识推理[J]. 计算机科学, 2014, 41(1):134-137. ZOU Li, TAN Xuewei, ZHANG Yunxia. Knowledge rea-soning based on linguistic truth-valued intuitionstic fuzzy logic[J]. Computer Science, 2014, 41(1):134-137.
[14] 郑宏亮, 徐本强, 邹丽. 一种基于十元格蕴涵代数的知识表示方法[J]. 计算机应用与软件, 2013, 30(1):37-40. ZHANG Hongliang, XU Benqiang, ZOU Li. An approach for knowledge representation based on ten-element lattice implication algebra[J]. Computer Application and Sof-tware, 2013, 30(1):37-40.
[15] 张云霞, 崔晓松, 邹丽. 一种基于十八元语言值模糊相似矩阵的聚类方法[J]. 山东大学学报, 2013, 43(1):1-7. ZHANG Yunxia, CUI Xiaosong, ZOU Li. A clustering method based on 18-element linguistic-valued fuzzy similar matrix[J]. Journal of Shandong University, 2013, 43(1):1-7.
[16] 孙芳, 张凤梅, 邹丽, 等. 基于六元格值命题逻辑的语言真值归结方法[J]. 广西师范大学学报:自然科学版, 2010, 28(3):118-121.SUN Fang, ZHANG Fengmei, ZOU Li, et al. Linguistic truth-valued resolution method based on six-element lattice-valued propositional logic[J]. Journal of Guangxi Normal University:Natural Science Edition, 2010, 28(3):118-121.
[17] 邹丽. 基于语言真值格蕴涵代数的格值命题逻辑及其归结自动推理研究[D]. 成都:西南交通大学, 2010:1-160. ZOU Li. Studies on lattice-valued propositional logic and its resolution-based automatic reasoning based on linguistic truth-valued lattice implication algebra[D]. Chengdu, China:Southwest Jiaotong University, 2010:1-160.
Similar References:

Memo

-

Last Update: 2015-11-16

Copyright © CAAI Transactions on Intelligent Systems