[1]DENG Peng,XU Yang.Classification of the characters in the set of clauses of propositional logic[J].CAAI Transactions on Intelligent Systems,2015,10(5):736-740.[doi:10.11992/tis.201410005]
Copy

Classification of the characters in the set of clauses of propositional logic

References:
[1] LIBERATORE P. Redundancy in logic I:CNF propositional formulae[J]. Artificial Intelligence, 2005, 163(2):203-232.
[2] LIBERATORE P. Redundancy in logic II:2CNF and Horn propositional formulae[J]. Artificial Intelligence, 2008, 172(2/3):265-299.
[3] BOUFKHAD Y, ROUSSEL O. Redundancy in random SAT formulas[C]//Proceedings of the 7th National Conference on Artificial Intelligence.[S.l.], 2000:273-278.
[4] FOURDRINOY O, GRéGOIRE é, MAZURE B, et al. Eliminating redundant clauses in sat instances[M]//Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. Berlin/Heidelberg:Springer, 2007:71-83.
[5] KULLMANN O. Constraint satisfaction problems in clausal form II:Minimal unsatisability and conict structure[J]. Fundamenta Informaticae, 2011, 109(1):83-119.
[6] MANTHEY N. Coprocessor 2.0-A flexible CNF simplifier[J]. Theory and Applications of Satisfiability Testing-SAT, 2012, 7317:436-441.
[7] BELOV A, JANOTA M, LYNCE I, et al. On computing minimal equivalent subformulas[J]. Principles and Practice of Constraint Programming, 2012, 7514:158-174.
[8] 张建. 逻辑公式的可满足性判定——方法、工具及应用[M]. 北京:科学出版社, 2000:22-30.
[9] 许有军. 基于扩展规则的若干SAT问题研究[D]. 长春:吉林大学, 2011:15-28. XU Youjun. Research on several SAT issues based on extension rule[D]. Changchun, China:Jilin University, 2011:15-28.
[10] CHANG C L, LEE R C T. Symbolic logic and mechanical theorem proving[M]. New York:Academic Press,1973:19-73, 22-25.
[11] LIU Yi, JIA Hairui, XU Yang. Determination of 3-Ary α-resolution in lattice-valued propositional logic LP(X)[J]. International Journal of Computational Intelligence Systems, 2013, 6(5):943-953.
[12] 翟翠红, 秦克云. 命题逻辑公式中的冗余子句及冗余文字[J]. 计算机科学, 2013, 40(5):48-50. ZHAI Cuihong, QIN Keyun. Redundancy clause and redundancy literal of propositional logic[J]. Computer Science, 2013, 40(5):48-50.
[13] 唐世辉. 命题逻辑中子句集的冗余性研究[D].成都:西南交通大学, 2014:30-35. TANG Shihui. Research redundancy of set of clauses in propositional logic[D]. Chengdu, China:Southwest Jiaotong University, 2014:30-35.
[14] 王国俊. 数理逻辑引论与归结原理[M]. 北京:科学出版社, 2006:16-25. WANG Guojun. Introduction to mathematical logic and resolution principle[M]. Beijing:Science Press, 2006:16-25.
[15] MUGGLETON S. Inductive logic programming[J]. New Generation Computing, 1991, 8(4):295-318.
Similar References:

Memo

-

Last Update: 2015-11-16

Copyright © CAAI Transactions on Intelligent Systems