[1]YU Lijun,CHEN Jia,LIU Fanming,et al.An improved particle swarm optimization forPID neural network decoupling control[J].CAAI Transactions on Intelligent Systems,2015,10(5):699-704.[doi:10.11992/tis.201406028]
Copy

An improved particle swarm optimization forPID neural network decoupling control

References:
[1] 孟祥振. 综合减摇系统参数配置及控制器优化研究[D]. 哈尔滨:哈尔滨工程大学, 2012:27-28. MENG Xiangzhen. The study of parameters configuration and controller optimization of integrated stabilization system[D]. Harbin:Harbin Engineering University, 2012:27-28.
[2] 周西峰, 林莹莹, 郭前岗. 基于粒子群算法的PID神经网络解耦控制[J]. 计算机技术与发展, 2013, 23(9):158-161.ZHOU Xifeng, LIN Yingying, GUO Qiangang. PID neural network decoupling control based on particle swarm optimization[J]. Computer Technology and Development, 2013, 23(9):158-161.
[3] MOHANDES M A. Modeling global solar radiation using particle swarm optimization (PSO)[J]. Solar Energy, 2012, 86(1):3137-3145.
[4] 应进. 基于粒子群算法的航空发动机多变量控制研究[D].南昌:南昌航空大学, 2011:23-24.YING Jin. Multivariable control for aeroengines based on particle swarm optimization algorithm[D]. Nanchang:Nanchang Hangkong University, 2011:23-24.
[5] AL-GEELANI N A, PIAH M A M, ADZIS Z, et al. Hybrid regrouping PSO based wavelet neuralnetworks for characterization of acoustic signalsdue to surface discharges on H.V.glass insulators[J]. Applied Soft Computing, 2013, 13(12):4622-4632.
[6] 胡建秀,曾建潮. 微粒群算法中惯性权重的调整策略[J]. 计算机工程, 2007, 33(11):193-195.HU Jianxiu,ZENG Jianchao.Selection on inertia weight of particle swarm optimization[J]. Computer Engineering, 2007, 33(11):193-195.
[7] 陈水利, 蔡国榕. PSO算法加速因子的非线性策略研究[J]. 长江大学学报(自然版):理工卷, 2007, 4(4):1-4.CHEN Shuili, CAI Guorong. Nonlinear strategy of PSO algorithm acceleration factor[J]. Journal of Yangtze University (Nat Sci Edit):Sci & Eng V, 2007, 4(4):1-4.
[8] ALIREZA A. PSO with adaptive mutation and inertia weight and its application in parameter estimation of dynamic systems[J]. Acta Automatica Sinica, 2011, 37(5):541-549.
[9] 于立君, 孟祥振, 金宏章, 等. 综合减摇系统参数配置研究[J]. 中国造船, 2012, 53(4):13-21.YU Lijun, MENG Xiangzhen, JIN Hongzhang, et al. Study of configuration parameters of integrated stabilization system[J]. Shipbuilding of China, 2012, 53(4):13-21.
[10] 于立君, 孙经广, 刘繁明, 等. 广义预测算法在综合减摇系统控制器设计中的应用[J]. 船舶工程, 2013, 35(6):76-79, 83.YU Lijun, SUN Jingguang, LIU Fanming, et al. Application of generalized prediction algorithm in designing integrated stabilization system controller[J]. Ship Engineering, 2013, 35(6):76-79, 83.
[11] CHIOU J S, TSAI S H, LIU Mingtang. A PSO-based adaptive fuzzy PID-controllers[J]. Simulation Modelling Practice and Theory, 2012, 26:49-59.
[12] 沈锡.基于粒子群优化算法的船舶航向PID控制[D]. 大连:大连海事大学, 2011:6-7.SHEN Xi. PID control for ship steering based on particle swarm optimization[D]. Dalian:Dalian Maritime University, 2011:6-7.
[13] BOUALLÈGUE S, HAGGÈGE J, AYADI M, et al. PID-type fuzzy logic controller tuning based on particle swarm optimization[J]. Engineering Applications of Artificial Intelligence, 2012, 25(3):484-493.
[14] RATNAWEERA A, HAIGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Compution, 2004, 8(3):240-255.
[15] 乔俊飞, 逄泽芳, 韩红桂. 基于改进粒子群算法的污水处理过程神经网络优化控制[J]. 智能系统学报, 2012, 7(5):429-436.QIAO Junfei, PANG Zefang, HAN Honggui. Neural network optimal control for wastewater treatment process based on APSO[J]. CAAI Transactions on Intelligent Systems, 2012,7(5):429-436.
Similar References:

Memo

-

Last Update: 2015-11-16

Copyright © CAAI Transactions on Intelligent Systems