[1]LI Hailin,GUO Ren,WAN Xiaoji.A minimum distance measurement method for amultivariate time series based on the feature matrix[J].CAAI Transactions on Intelligent Systems,2015,10(3):442-447.[doi:10.3969/j.issn.1673-4785.201405047]
Copy

A minimum distance measurement method for amultivariate time series based on the feature matrix

References:
[1] ESLING P, AGON C. Time-series data mining[J]. ACM Computing Surverys, 2012, 45(1): 11-12.
[2] 李海林, 杨丽彬. 时间序列数据降维及特征表示新方法[J]. 控制与决策, 2013, 28(11):1718-1722.LI Hailin, YANG Libin. Novel method of dimensionality reduction and feature representation for time series[J]. Control and Decision, 2013, 28(11):1718-1722.
[3] YANG K, SHAHABI C. An efficient k nearest neighbor search for multivariate time series[J]. Information and Computation, 2007, 205(1): 65-98.
[4] 韩敏, 李德才. 基于EOF-SVD模型的多元时间序列相关性研究及预测[J]. 系统仿真学报, 2008, 20(7): 1669-1672HAN Min, LI Decai. Multiple time series correlation extraction and prediction based on EOF-SVD model[J]. Journal of System Simulation, 2008, 20(7): 1669-1672.
[5] WENG Xiaoqing, SHEN Junyi. Classification of multivariate time series using two dimensional singular value decomposition[J]. Knowledge-Based Systems. 2008, 21(7): 535-539.
[6] 吴虎胜, 张凤鸣, 钟斌. 基于二维奇异值分解的多元时间序列相似匹配方法[J]. 电子与信息学报, 2014, 36(4): 847-854.WU Husheng, ZHANG Fengming, ZHONG Bin. Similar pattern matching method for multivariate time series based on two-dimensional singular value decomposition[J]. Journal of Electronics & Information Technology, 2014, 36(4): 847-854.
[7] 樊继聪, 王友清, 秦泗钊. 联合指标独立成分分析在多变量过程故障诊断中的应用[J]. 自动化学报, 2013, 39(5): 494-501.FAN Jicong, WANG Youqing, QIN Sizhao. Combined indices for ICA and their applications to multivariate process fault diagnosis[J]. Acta Automatica Sinica, 2013, 39(5): 494-501.
[8] 梁胜杰, 张志华, 崔立林, 等. 基于主成分分析与核独立成分分析的降维方法[J]. 系统工程与电子技术, 2011, 33(9): 2144-2148. LIANG Shengjie, ZHANG Zhihua, CUI Lilin, et al. Dimensionality reduction method based on PCA and KICA[J]. Systems Engineering and Electronics, 2011, 33(9): 2144-2148.
[9] 李正欣, 郭建胜, 惠晓滨, 等. 基于共同主成分的多元时间序列降维方法[J]. 控制与决策, 2013, 28(4): 531-536.LI Zhengxin, GUO Jiansheng, HUI Xiaobin, et al. Dimension reduction method for multivariate time series based on common principal component[J]. Control and Decision, 2013, 28(4): 531-536.
[10] 李正欣, 张凤鸣, 张晓丰, 等. 多元时间序列特征降维方法研究[J]. 小型微型计算机系统, 2013, 34(2): 338-346.LI Zhengxin, ZHANG Fengming, ZHANG Xiaofeng. Research on feature dimension reduction method for multivariate time series[J]. Journal of Chinese Computer Systems, 2013, 34(2): 338-346.
[11] LI Hailin. Asynchronism-based principal component analysis for time series data mining[J]. Expert Systems with Applications, 2014, 41(6): 2842-2850.
[12] YANKOV D, KEOGH E, REBBAPRAGADA U. Disk aware discord discovery: finding unusual time series in terabyte sized datasets[J]. Knowledge and Information Systems, 2007, 17(2): 381-390.
[13] CHEN Yanping, HU Bing, KEOGH E, et al. DTW-D: time series semi-supervised learning from a single example[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, USA, 2013: 383-391.
[14] YANG K, SHAHABI C. A PCA-based similarity measure for multivariate time series[C]//Proceedings of the 2nd ACM International Workshop on Multimedia Databases. Washington, DC, USA, 2004: 65-74.
[15] 何坚勇. 运筹学基础[M]. 北京: 清华大学出版社, 2006: 217-220.
[16] BACHE K, LICHMAN M. UCI machine learning repository. (2013-12-21)[2014-4-28]. http://archive.ics.uci.edu/ml.
Similar References:

Memo

-

Last Update: 2015-07-15

Copyright © CAAI Transactions on Intelligent Systems