[1]ZHUANG Weiyuan,CHENG Yun,LIN Xianming,et al.Action recognition based on the angle histogram of key parts[J].CAAI Transactions on Intelligent Systems,2015,10(1):20-26.[doi:10.3969/j.issn.1673-4785.201410039]
Copy

Action recognition based on the angle histogram of key parts

References:
[1] YANG Weilong, WANG Yang, MORI G. Recognizing human actions from still images with latent poses[C]//IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 2030-2037.
[2] LAPTEV I. On space-time interest points[J]. International Journal of Computer Vision, 2005, 64(2/3): 107-123.
[3] WANG H, KLASER A, SCHMID C, et al. Action recognition by dense trajectories[C]//IEEE Conference on Computer Vision and Pattern Recognition. Colorado, USA, 2011: 3169-3176.
[4] KLASER A, MARSZALEK M, SCHMID C. A spatio-temporal descriptor based on 3d-gradients[C]//British Machine Vision Conference. Leeds, UK, 2008: 275-285.
[5] SADANAND S, CORSO J. Action bank: a high-level representation of activity in video[C]//IEEE Conference on Computer Vision and Pattern Recognition.[s.l.], 2012: 1234-1241.
[6] BAYSAL S, DUYGULU P. A line based pose representation for human action recognition[J]. Signal Processing: Image Communication, 2013, 28(5): 458-471.
[7] LI Wang, LI Cheng. Human action recognition from boosted pose estimation[C]//International Conference on Digital Image Computing: Techniques and Applications. Sydney, AU, 2010: 308-313.
[8] 徐光祐,曹媛媛. 动作识别和行为理解综述[J]. 中国图像图形学报, 2009,14(2): 189-195.XU Guangyou, CAO Yuanyuan. Action recognition and activity understanding: a review[J]. Journal of Image and Graphics, 2009, 14(2): 189-195.
[9] BOURDEV L, MALIK J. Poselets: body part detectors training using 3-D human pose annotations[C]//IEEE International Conference on Computer Vision.[s.l.], 2009: 1365-1372.
[10] FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multi scale, deformable part model[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008: 1-8.
[11] YANG Y, RAMANAN D. Articulated pose estimation with flexible mixtures-of-parts[C]//IEEE Conference on Computer Vision and Pattern Recognition. Colorado, USA, 2011: 1385-1392.
[12] YANG Y, RAMANAN D. Articulated human detection with flexible mixtures of parts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2878-2890.
[13] WANG Jiang, LIU Zicheng, WU Ying. Ming acionlet ensemble for action recognition with depth cameras[C]//IEEE Conference on Computer Vision and Pattern Recognition.[s.l.], USA, 2012: 1290-1297.
[14] 雷庆,李绍滋. 动作识别中局部时空特征的运动表示方法研究[J]. 计算机工程与应用, 2010, 46(34): 7-10.LEI Qing, LI Shaozi. Research on local spatio-temporal features for action recognition[J]. Computer Engineering and Applications, 2010, 46(34): 7-10.
[15] EPSHTEIN B, ULLMAN S. Semantic hierarchies for recognizing objects and parts[C]//IEEE Conference on Computer Vision and Pattern Recognition., 2007: 1-8.
[16] FELZENSZWALB P, HUTTENLOCHER D. Pictorial structures for object recognition[J]. International Journal of Computer Vision, 2005, 61(1): 55-79.
[17] FELZENSZWALB P, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645.
[18] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//IEEE Conference on Computer Vision and Pattern Recognition., 2005: 886-893.
[19] 曲永宇,刘清,郭建明. 基于HOG和颜色特征的行人检测[J]. 武汉理工大学学报, 2011, 33(4):134-141.QU Yongyu, LIU Qing, GUO Jianming. HOG and color based pedestrian detection[J]. Journal of Wuhan University of Technology, 2011, 33(4): 134-141.
[20] LAPTEV I, CAPUTO B, SCHULDT Christian. Local velocity-adapted motion events for spatio-temporal recognition[J]. Computer Vision and Image Understanding, 2007, 108: 207-229.
[21] BURGOS-ARTIZZU X P, HALL D, PIETRO P, et al. Merging pose estimates across space and time[C]//British Machine Vision Conference. Bristol, UK, 2013: 58-69.
[22] 王千,王成,冯振元. K-means聚类算法研究综述[J]. 电子设计工程, 2012, 20(7): 21-24.WANG Qian, WANG Cheng, FENG Zhenyuan. Review of K-means cluster algorithm[J]. Electronic Design Engineering, 2012, 20(7): 21-24.
[23] LAPTEV I, MARSZALEK M, SCHMID C, el al. Learning realistic human actions from movies[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008: 1-8.
[24] BREGONZIO M, GONG S, XIANG T. Recognizing action as clouds of space-time interest points[C]//IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 1948-1955.
[25] LIU J, SHAH M. Learning human actions via information maximization[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008: 1-8.
[26] WU X, XU D, DUAN L,et al. Action recognition using context and appearance distribution features[C]//IEEE Conference on Computer Vision and Pattern Recognition. Colorado, USA, 2011: 489-496.
[27] GILBERT A, ILLINGWORTH J, BOWDEN R. Fast realistic multi-action recognition using mined dense spatio-temporal features[C]//IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 925-931.
[28] 凌志刚,赵春晖,梁彦. 基于视觉的人行为理解综述[J]. 计算机应用研究, 2008, 25(9): 2570-2578.LING Zhigang, ZHAO Chunhui, LIANG Yan. Survey on vision-based human action understanding[J]. Application Research of Computers, 2008, 25(9): 2570-2578.
Similar References:

Memo

-

Last Update: 2015-06-16

Copyright © CAAI Transactions on Intelligent Systems