[1]PU Xingcheng,LIN Yanqin.Hybrid pruning algorithm for the neural network based on significance analysis[J].CAAI Transactions on Intelligent Systems,2014,9(6):690-697.[doi:10.3969/j.issn.1673-4785.201309062]
Copy

Hybrid pruning algorithm for the neural network based on significance analysis

References:
[1] YONG Mingjing, HUA Yingdong. Study on characteristic of fractional master-slave neural network[C]//Fifth International Symposium on Computational Intelligence and Design. Hangzhou, China, 2012: 498-501.
[2] 乔俊飞, 张颖. 一种多层前馈神经网络的快速修剪算法[J]. 智能系统学报, 2008, 3(2): 622-627. QIAO Junfei, ZHANG Ying. Fast unit pruning algorithm for feed forward neural network design [J]. CAAI Transactions on Intelligent Systems, 2008, 3(2): 622-627.
[3] MOOD Y J. Prediction risk and architecture selection for neural networks[C]//Statistics to Neural Networks: Theory and Pattern Recognition Applications, NATO ASI Series F. New York, 1994: 288-290.
[4] LIU Yong. Create stable neural networks by cross-validation[C]//International Joint Conference on IJCNN’06 Neural Networks. Vancouver, Canada, 2006: 3925-3928.
[5] DU Juan, ER Mengjoo. A fast pruning algorithm for an efficient adaptive fuzzy neural network[C]//Eighth IEEE International Conference on Control and Automation. Xiamen, China, 2010: 1030-1035.
[6] 乔俊飞, 韩红桂. 前馈神经网络分析与设计[M]. 北京:科学出版社, 2013: 107-158.
[7] EUGENE S, MARIA S. A self-configuring genetic programming algorithm with modified uniform crossover[C]//WCCI 2012 IEEE World Congress on Computational Intelligence. Brisbane, Australia, 2012: 1984-1990.
[8] 吴鹏. 基于语法引导的遗传编程在神经树中的应用[D]. 济南: 济南大学, 2007: 69-102. WU Peng. The application of genetic programming in the neural tree based on grammar guide[D]. Jinan: University of Jinan, 2007: 69-102.
[9] 周明, 孙树栋. 遗传算法原理及应用[M]. 北京:国防工业出版社, 1999: 1-26.
[10] 巩敦卫, 孙晓燕. 基于合作式协同进化算法的神经网络优化[J]. 中国矿业大学学报, 2006, 35(1): 114-119.GONG Dunwei, SUN Xiaoyan. Optimization of neural network based on cooperative co-evolutionary algorithm [J]. Journal of China University of Mining & Technology, 2006, 35(1): 114-119.
[11] POTTER M A. The design and analysis of a computational model of cooperative co-evolution [D]. Fairfax: George Mason University, 1997: 21-66.
[12] HETCHT N R. Theory of the back propagation neural network[C]//Proceedings of the International Joint Conference on Neural Networks. New York: IEEE Press, 1989: 593-611.
[13] BLUM E K, LI L K. Approximation theory and feed forward networks[J]. Neural Net, 1991,2(3): 511-515.
Similar References:

Memo

-

Last Update: 2015-06-16

Copyright © CAAI Transactions on Intelligent Systems