[1]TAN Ying,ZHANG Pengtao.Immune based computer virus detection approaches[J].CAAI Transactions on Intelligent Systems,2013,8(1):80-94.[doi:10.3969/j.issn.1673-4785.201209059]
Copy

Immune based computer virus detection approaches

References:
[1]BAILEY M, OBERHEIDE J, ANDERSEN J, et al. Automated classification and analysis of internet malware[C]//The 10th Symposium on Recent Advances in Intrusion Detection. Gold Coast, Australia, 2007: 178-197.
[2]PERELSON A S, WEISBUCH G. Immunology for physicists[J]. Reviews of Modern Physics, 1997, 69(4): 1219-1268.
[3]FORREST S, PERELSON A S, ALLEN L, et al. Self nonself discrimination in a computer[C]//IEEE Computer Society Symposium on Research in Security and Privacy. Oakland, USA, 1994: 202-212.
[4]KEPHART J O, ARNOLD W C. Automatic extraction of computer virus signatures[C]//The 4th Virus Bulletin International Conference. Jersey Islands, UK, 1994: 178-184.
[5]KEPHART J O, SORKIN G B, SWIMMER M, et al. Blueprint for a computer immune system[C]//Proceedings of the Seventh International Virus Bulletin Conference. San Francisco, USA, 1997: 159-173.
[6]OKAMOTO T, ISHIDA Y. Distributed approach against computer viruses inspired by the immune system[J]. IEICE Transactions on Communications, 2000, 83(5): 908-915.
[7]WANG Wei, ZHANG Pengtao, TAN Ying, et al. A hierarchical artificial immune model for virus detection[C]//International Conference on Computational Intelligence and Security. Beijing, China, 2009: 1-5.
[8]CHAO Rui, TAN Ying. A virus detection system based on artificial immune system[C]//International Conference on Computational Intelligence and Security. Beijing, China, 2009: 6-10.
[9]WANG Wei, ZHANG Pengtao, TAN Ying. An immune concentration based virus detection approach using particle swarm optimization[C]//International Conference on Swarm Intelligence. Beijing, China, 2010: 347-354.
[10]COHEN F. Computer viruses: theory and experiments[J]. Computers and Security, 1987, 6(1): 22-35.
[11]FU Jianming, PENG Guojun, ZHANG Huanguo. Computer virus analysis and confronting[M]. Wuhan, China: Wuhan University Press, 2009.
[12]DAOUD E A. Metamorphic viruses detection using artificial immune system[C]//International Conference on Communication Software and Networks. Macau, China, 2009: 168-172.
[13]XU J Y, SUNG A H, MUKKAMALA S, et al. Obfuscated malicious executable scanner[J]. Journal of Research and Practice in Information Technology, 2007, 39: 181-197.
[14]KERCHEN P, LO R, CROSSLEY J, et al. Static analysis virus detection tools for unix systems[C]//13th National Computer Security Conference. Washington, DC, USA, 1990: 4-9.
[15]CHRISTODORESCU M, JHA S, SESHIA S A, et al. Semantics aware malware detection[C]//IEEE Symposium on Security and Privacy. Berkeley/Oakland, USA, 2005: 32-46.
[16]CARPENTER M, LISTON T, SKOUDIS E. Hiding virtualization from attackers and malware[J]. Security & Privacy, 2007, 5(3): 62-65.
[17]WILLEMS C, HOLZ T, FREILING F. Toward automated dynamic malware analysis using CW Sandbox[J]. Security & Privacy, 2007, 5(2): 32-39.
[18]YAN Wei, ZHANG Zheng, ANSARI N. Revealing packed malware[J]. Security & Privacy, 2008, 6(5): 65-69.
[19]ZHANG Xiaosong, PAN Xiaohui, LONG Xiaoshu. Analysis of virtual machine applied to malware detection system[C]//International Symposium on Information Engineering and Electronic Commerce. Ternopil, Ukraine, 2009: 290-294.
[20]WANG Cheng, PANG Jianmin, ZHAO Rongcai, et al. Malware detection based on suspicious behavior identification[C]//Proceedings of the 2009 First International Workshop on Education Technology and Computer Science. Washington, DC, USA: IEEE Computer Society, 2009, 2: 198-202.
[21]HOFMEYR S A, FORREST S, SOMAYAJI A. Intrusion detection using sequences of system calls[J]. Journal of Computer Security, 1998, 6(3): 151-180.
[22]SCHULTZ M G, ESKIN E, ZADOK E, et al. Data mining methods for detection of new malicious executables[C]//Proceedings of the IEEE Symposium on Security and Privacy. Oakland, USA, 2001: 38-49.
[23]Cygnus. GNU Binutils Cygwin[EB/OL]. [2012-09-16]. http://sourceware.cygnus.com/cygwin.
[24]MILLER P. Hexdump[EB/OL]. [2012-09-16]. http://miller.emu.id.au/ pmiller/software/hexdump/.
[25]KOLTER J Z, MALOOF M A. Learning to detect malicious executables in the wild[C]//Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, USA, 2004: 470-478.
[26]KOLTER J Z, MALOOF M A. Learning to detect and classify malicious executables in the wild[J]. Journal of Machine Learning Research, 2006, 7: 2721-2744.
[27]REDDY D K S, PUJARI A K. N gram analysis for computer virus detection[J]. Journal of Computer Virol, 2006, 2(3): 231-239.
[28]LI W J, WANG K, STOLFO S J, et al. Fileprints: identifying filetypes by Ngram analysis[C]//Proceedings of the 6th IEEE Systems, Man, and Cybernetics Information Assurance Workshop. Piscataway, USA: IEEE Press, 2005: 64-71.
[29]STOLFO S J, WANG K, LI W J. Towards stealthy malware detection[M]//CHRISTODORESCU M, JHA S, MAUGHAN D. Advances in Information Security. [S.l.]: Springer, 2007: 231-249.
[30]LI W J, STOLFO S J, STAVROU A, et al. A study of malcodebearing documents[C]//International Conference on Detection of Intrusions & Virus, and Vulnerability Assessment (DIMVA). Lucerne, Switzerland, 2007: 231-250.
[31]SULAIMAN A, RAMAMOORTHY K, MUKKAMALA S, et al. Disassembled code analyzer for malware (DCAM)[C]//Proceedings of the IEEE International Conference on Information Reuse and Integration. Las Vegas, USA, 2005: 398-403.
[32]HENCHIRI O, JAPKOWICZ N. A feature selection and evaluation scheme for computer virus detection[C]//Sixth International Conference on Data Mining. Hong Kong, China, 2006: 891-895.
[33]KARNIK A, GOSWAMI S, GUHA P. Detecting obfuscated viruses using cosine similarity analysis[C]//Proceedings of the First Asia International Conference on Modeling & Simulation. Phuket, Thailand, 2007: 165-170.
[34]YE Yanfang, JIANG Qingshan, ZHUANG Weiwei. Associative classification and post processing techniques used for malware detection[C]//2nd International Conference on Anti Counterfeiting, Security and Identification. Guiyang, China, 2008: 276-279.
[35]YE Yanfang, WANG Dingding, LI Tao, et al. IMDS: intelligent malware detection system[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007: 1043-1047.
[36]YE Yanfang, WANG Dingding, LI Tao, et al. An intelligent PE malware detection system based on association mining[J]. Journal in Computer Virology, 2008, 4(4): 323-334.
[37]TABISH S M, SHAFIQ M Z, FAROOQ M. Malware detection using statistical analysis of bytelevel file content[C]//Proceedings of the ACM SIGKDD Workshop on Cyber Security and Intelligence Informatics. Paris, France, 2009: 23-31.
[38]TREADWELL S, ZHOU M. A heuristic approach for detection of obfuscated malware[C]//IEEE International Conference on Intelligence and Security Informatics. Dallas, USA, 2009: 291-299.
[39]YE Yanfang, LI Tao, JIANG Qingshan, et al. CIMDS: adapting post processing techniques of associative classification for virus detection[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2010, 40(3): 298307.
[40]ZOLKIPLI M F, JANTAN A. A framework for malware detection using combination technique and signature generation[C]//Proceedings of the 2010 Second International Conference on Computer Research and Development. Kuala Lumpur, Malaysia, 2010: 196-199.
[41]KOMASHINSKIY D, KOTENKO I. Malware detection by data mining techniques based on positionally dependent features[C]//18th Euromicro International Conference on Parallel, Distributed and Network Based Processing (PDP). Pisa, Italy, 2010: 617-623.
[42]FENG Shaorong, HAN Zhixue. An incremental associative classification algorithm used for malware detection[C]//2nd International Conference on Future Computer and Communication (ICFCC). Wuhan, China, 2010, 1: 757-760.
[43]MUHAYA F B, KHAN M K, XIANG Y. Polymorphic malware detection using hierarchical hidden Markov model[C]//IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing (DASC). Sydney, Australia, 2011: 151-155.
[44]SHANKARAPANI M K, RAMAMOORTHY S, MOVVA R S, et al. Malware detection using assembly and API call sequences[J]. Journal in Computer Virology, 2011, 7(2): 107-119.
[45]RAVI C, MANOHARAN R. Malware detection using windows API sequence and machine learning[J]. International Journal of Computer Applications, 2012, 43(17): 12-16.
[46]HAN K S, KIM I K, IM E G. Detection methods for malware variant using API call related graphs[C]//International Conference on IT Convergence and Security. Suwon, Korea, 2012: 607-611.
[47]FORREST S, HOFMEYR S A, SOMAYAJI A, et al. A sense of self for uix processes[C]//Proceedings of IEEE Symposium on Security and Privacy. Oakland, USA, 1996: 120-128.
[48]KIM J, BENTLEY P. Towards an artificial immune system for network intrusion detection: an investigation of clonal selection with a negative selection operator[C]//2001 IEEE Congress on Evolutionary Computation. Seoul, Korea ,2001: 1244-1252.
[49]MATZINGER P. The danger model: a renewed sense of self[J]. Science, 2002, 296(5566): 301-305.
[50]LEE H, KIM W, HONG M. Artificial immune system against viral attack[C]//International Conference on Computational Science 2004. Krakow, Poland, 2004: 499-506.
[51]EDGE K S, LAMONT G B, RAINES R A. A retrovirus inspired algorithm for virus detection & optimization[C]//Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. Seattle, USA, 2006: 103-110.
[52]LI Zhou, LIANG Yiwen, WU Zejun, et al. Immunity based virus detection with process call arguments and user feedback[C]//International Conference on BioInspired Models of Network, Information and Computing Systems. Budapest, Hungary, 2007: 57-64.
[53]GONZALEZ F, DASGUPTA D. Anomaly detection using realvalued negative selection[J]. Journal of Genetic Programming and Evolvable Machines, 2003, 4(4): 383-403.
[54]BALACHANDRAN S, DASGUPTA D, NINO F, et al. A general framework for evolving multishaped detectors in negative selection[C]//Proceedings of the IEEE Symposium Series on Computational Intelligence. Honolulu, USA, 2007: 401-408.
[55]LI Tao. Dynamic detection for computer virus based on immune system[J]. Science China Series F: Information Sciences, 2009, 39(4): 422-430.
[56]HARMER P K, WILLIAMS P D, GUNSCH G H, et al. An artificial immune system architecture for computer security applications[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 252-280.
[57]MARHUSIN M F, CORNFORTH D, LARKIN H. Malicious code detection architecture inspired by human immune system[C]//Proceedings of the 2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing. Phuket, Thailand, 2008: 312-317.
[58]GONG Tao. Unknown nonself detection & robustness of distributed artificial immune system with normal model[C]//7th World Congress on Intelligent Control and Automation. Chongqing, China, 2008: 1444-1448.
[59]ZHANG Yu, LI Tao, QIN Renchao. A dynamic immunitybased model for computer virus detection[C]//2008 International Symposiums on Information Processing (ISIP). Moscow, Russia, 2008: 515-519.
[60]QIN Renchao, LI Tao, ZHANG Yu. An immune inspired model for obfuscated virus detection[C]//International Conference on Industrial Mechatronics and Automation. Chengdu, China, 2009: 228-231.
[61]ZENG Jie, LI Tao. A novel computer virus detection method from ideas of immunology[C]//International Conference on Multimedia Information Networking and Security. Wuhan, China, 2009: 412-416.
[62]AL D E. Metamorphic viruses detection using artificial immune system[C]//International Conference on Communication Software and Networks. Macau, China, 2009: 168-172.
[63]ZHANG Chenggong, YI Zhang. A danger theory inspired artificial immune algorithm for on line supervised two class classification problem[J]. Neurocomputing, 2010, 73(7): 1244-1255.
[64]ZHU Yuanchun, TAN Ying. A danger theory inspired learning model and its application to spam detection[C]//International Conference on Swarm Intelligence. Chongqing, China, 2011: 382-389.
[65]ZHANG Pengtao, TAN Ying. A danger feature based negative selection algorithm[C]//International Conference on Swarm Intelligence. Shenzhen, China, 2012: 291-299.
[66]Computational Intelligence Laboratory of Peking University. CILPKU08 Dateset[EB/OL]. [2012-09-16]. http://www.cil.pku.edu.cn/resources/.
[67]ZHANG Pengtao, WANG Wei, TAN Ying. A malware detection model based on a negative selection algorithm with penalty factor[J]. Scientia Sinica Informationis, 2010, 53(12): 2461-2471.
Similar References:

Memo

-

Last Update: 2013-04-12

Copyright © CAAI Transactions on Intelligent Systems