[1]GU Wenxiang,FU Linlu,ZHOU Junping,et al.Solution algorithm for the NAE3SAT problem based on DPLL[J].CAAI Transactions on Intelligent Systems,2012,7(6):506-511.
Copy

Solution algorithm for the NAE3SAT problem based on DPLL

References:
[1]COLMERAUER A. Opening the Prolog III universe[J]. Byte Magazine, 1987, 12(9): 177182.
[2]KLEER J. Exploiting locality in a TMS[C]//Proceedings of the 8th National Conference on Artificial Intelligence. Boston, USA, 1990: 264275.
[3]GU J. Local search for satisfiability (SAT) problem[J]. IEEE Transactions on Systems, Man and Cybernetics, 1993, 23(4): 11081129.
[4]李未, 黄文奇. 一种求解合取范式可满足性问题的数学物理方法[J]. 中国科学: A辑, 1994, 24(11): 12081217. 
LI Wei, HUANG Wenqi. A mathematic physical approach to the satisfiability problems[J]. Science in China: Series A, 1994, 24(11): 12081217.
[5]COOK S A. The complexity of the theoremproving procedures[C]//Proceedings of the Third Annual ACM Symposium on Theory of Computing. New York, USA, 1971: 151158.
[6]MONIEN B, SPECKENMEYER E. Upper bounds for covering problems[R]. UniversitatGesamtho Chschule Paderborn: Reihe Theoretische Informatik, 1980.
[7]HIRSCH E A. New worstcase upper bounds for SAT[J]. Journal of Automated Reasoning, 2000, 24(4): 397420.
[8]YAMAMOTO M. An improved O(1.234m)time deterministic algorithm for SAT[J]. Lecture Notes in Computer Science, 2005, 3827: 644653.
[9]MONIEN B, SPECKENMEYER E. Solving satisfiability in less than 2n steps[J]. Discrete Applied Mathematics, 1985, 10(3): 287295.
[10]BRUEGGEMANN T, KERN W. An improved local search algorithm for 3SAT[J]. Theoretical Computer Science, 2004, 329(1/2/3): 303313.
[11]DANTSIN E, GOERDT A, HIRSCH E A, et al. Adeterministic (22/(k+1))n algorithm for kSAT based on local search[J]. Theoretical Computer Science, 2002, 289(1): 6983.
[12]ZHANG Lintao, MADIGN C F, MOSKEWICZ M H, et al. Efficient conflict driven learning in a Boolean satisfiability solver[C]//Proc of the ACM/IEEE ICCAD 2001. New York, USA, 2001: 279285.
[13]ZECCHINA R, MEZARD M, PARISI G. Analytic and algorithmic solution of random satisfiability problems[J]. Science, 2002, 297(5582): 812815.
[14]ZECCHINA R, MONASSON R, KIRKPATRICK S, et al. Determining computational complexity from characteristic phase transitions[J]. Nature, 1999, 400(6740): 133137.
[15]THOMAS J S. The complexity of satisfiability problems[C]//Conference Record of the Tenth Annual ACM Symposium on Theory of Computing. New York, USA, 1978: 216226.
[16]PORSCHEN S, RANDERATH B, SPECKENMEYER E. Linear time algorithms for some notallequal satisfiability problems[C]//Proceedings of the 6th International Conference on Theory and Application of Satisfiability Testing(SAT2003). Santa Margherita Ligure, Italy, 2003: 172187.
[17]WALSH T. The interface between P and NP: COL, XOR, NAE, 1ink, and Horn SAT[C]//Eighteenth National Conference on Artificial Intelligencet. Edmonton, Canada, 2002: 685700.
[18]MONIEN B, SPECKENMEYER E, VORNBERGER O. Upper bounds for covering problems[J]. Methods of Operations Research, 1981, 43: 419431.
[19]RIEGE T, ROTHE J, SPAKOWSKI H. An improved exact algorithm for the domatic number problem[J]. Information Processing Letters, 2006, 101(3): 101106.
[20]SHI Nungyue, CHU Chihping. A DNAbased algorithm for the solution of notallequal 3SAT problem[C]//ASE International Conference on Information Engineering.Taiyuan, China, 2009: 9497.
[21]ZHOU Junping, YIN Minghao, ZHOU Chunguang. New worstcase upper bound for #2SAT and #3SAT with the number of clauses as the parameter[C]//Proceedings of 24rd AAAI Conference on Artificial Intelligence. Atlanta, USA, 2010: 217222.
[22]周俊萍, 殷明浩, 周春光, 等. 最坏情况下#3SAT问题最小上界[J]. 计算机研究与发展, 2011, 48(11): 20552063. 
ZHOU Junping, YIN Minghao, ZHOU Chunguang, et al. The worst case minimized upper bound in #3SAT[J]. Journal of Computer Research and Development, 2011, 48(11): 20552063.
Similar References:

Memo

-

Last Update: 2013-03-19

Copyright © CAAI Transactions on Intelligent Systems