[1]SAIKA Yohei,AOKI Toshizumi.Thermodynamicsinspired inverse halftoning via multiple halftone images[J].CAAI Transactions on Intelligent Systems,2012,7(1):86-94.
Copy

Thermodynamicsinspired inverse halftoning via multiple halftone images

References:
[1]BESAG J. On the statistical analysis of dirty pictures[J]. Journal of the Royal Statistical Society—Series B: Statistical Methodological, 1986, 48(3): 259302.
[2]GONZALES R C, WOODS R C. Digital image processing[M]. Reading, USA: Addison Wiley, 1986.
[3]WINKLER G. Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction[M]. Berlin, Germany: SpringerVerlag, 1995.
[4]NISHIMORI H. Statistical physics of spin glasses and information processing: an introduction[M]. Oxford, UK: Oxford Press, 2001.
[5]TANAKA K. Statisticalmechanical approach to image processing[J]. Journal of Physics A: Mathematical and General, 2002, 35(37): R31R150.
[6]ULICHNEY R. Digital halftoning[M]. Cambridge, USA: The MIT Press, 1987.
[7]BAYER B E. An optimum method for twolevel rendition of continuous tone pictures[C]//IEEE International Conference on Communications. New York, USA: IEEE Press, 1973: 1115.
[8]MICELI C M, PARKER K J. Inverse halftoning[J]. Journal of Electronic Imaging, 1992, 1(2): 143151. 
[9]WONG P W. Inverse halftoning and kernel estimation for error diffusion[J]. IEEE Transactions on Image Processing, 1995, 4(4): 486498.
[10]STEVENSON R L. Inverse halftoning via MAP estimation[J]. IEEE Transactions on Image Processing, 1997, 6(4): 574583. 
[11]SAIKA Y, INOUE J, TANAKA H, et al. Bayesoptimal solution to inverse halftoning based on statistical mechanics of the QIsing model[J]. Central European Journal of Physics, 2009, 7(3): 444456.
[12]TIPPING M E, BISHOP C M. Bayesian image superresolution[M]//BECKER S, THRUN S, OBERMAYER K. Advances in Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2003: 12791286.
[13]KANEMURA A, MAEDA S, ISHII S. Superresolution with compound Markov random fields via the variational EM algorithm[J]. Neural Networks, 2009, 22(7): 10251034.
[14]DEMPSTER A P, LAIRD N M, RUBIN D B. Maximumlikelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society—Series B: Statistical Methodological, 1977, 39(1): 138.
[15]TANAKA K, INOUE J, TITTERINGTON D M. Probabilistic image processing by means of the Bethe approximation for the QIsing model[J]. Journal of Physics A: Mathematical and General, 2003, 36(43): 1102311035. 
Similar References:

Memo

-

Last Update: 2012-05-07

Copyright © CAAI Transactions on Intelligent Systems