[1]LIU Sheng,LI Gao-yun,JIANG Na.Multiobjective optimization of an immune fish swarm algorithm to improve support vector machine performance[J].CAAI Transactions on Intelligent Systems,2010,5(2):144-149.
Copy

Multiobjective optimization of an immune fish swarm algorithm to improve support vector machine performance

References:
[1]刘 胜,李妍妍.基于支持向量机的锅炉过热系统建模研究[J].热能动力工程, 2007,22(1):3841.
LIU Sheng, LI Yanyan. A study of the modeling of a boiler superheating system based on a supportive vector machine[J]. Journal of Engineering for Thermal Energy and Power,2007,22(1):3841.
[2]APNIK V N.The nature of statistical learning theory[M].New York: SpringerVerlag,1995:2435.
?[3]SHELOKAR P S, ADHIKARI S, VAKIL R, JAYARAMAN V K.Multiobjective ant algorithm:combination of strength Pareto fitness assignment and thermodynamic clustering[J].Foundations of Computing and Decision Sciences,2000,25(4):213229.
[4]COELLO C A C,PULIDO G T,LECHUGA M S.Handling multiple objectives with particle swarm optimization[J].IEEE Transaction on Evolutionary Computation,2004,8(3):256279.
[5]李晓磊.一种新型的智能优化方法—人工鱼群算法[D].杭州: 浙江大学, 2003.
?LI Xiaolei. A new intelligent optimization methodartificial fish school algorithm[D].Hangzhou: Zhejiang University,2003.
[6]张梅凤,邵 诚,甘 勇.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报,2006,34(8):13811385.
ZHANG Meifeng, SHAO Cheng, GAN Yong. Hybrid artificial fish swarm optimization algorithm based on mutation operator and simulated annealing[J]. Acta Electronica Sinica,2006, 34(8):13811385.
[7]莫宏伟.人工免疫系统原理与应用[M].哈尔滨:哈尔滨工业大学出版社,2002:2758.
[8]张浩然,韩正之,李昌刚.基于支持向量机的未知非线性系统辨识与控制[J].上海交通大学学报,2003,37(6):927930.
ZHANG Haoran, HAN Zhengzhi, LI Changgang. Support vector machine based unknown nonlinear systems identification and control[J].Journal of Shanghai Jiaotong University, 2003,37(6):927930.
[9]VELDHUIZEN D A V, LAMONT G B. On measuring multiobjective. evolutionary algorithm performance[C]//Proceedings of the 2000 Congress on Evolutionary Computation. California, CA, USA,2000:204211.
[10]TAN K, LEE T, KHOR E. Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation,2001,7 (3):565588.
?[11]KAPUR J, KESAVAN H. Entropy optimization principles with applications[M]. San Diego: Academic Press,1992:214258.
Similar References:

Memo

-

Last Update: 2010-05-24

Copyright © CAAI Transactions on Intelligent Systems