[1]ZHAO Wenqing,ZHAO Zhenhuan,GONG Jiaxiao.Remote sensing image object detection based on inverted residual self-attention mechanism[J].CAAI Transactions on Intelligent Systems,2025,20(1):64-72.[doi:10.11992/tis.202312001]
Copy

Remote sensing image object detection based on inverted residual self-attention mechanism

References:
[1] 石争浩, 仵晨伟, 李成建, 等. 航空遥感图像深度学习目标检测技术研究进展[J]. 中国图象图形学报, 2023, 28(9): 2616-2643.
SHI Zhenghao, WU Chenwei, LI Chengjian, et al. Research progress on deep learning object detection technology for aerial remote sensing images[J]. Journal of image and graphics, 2023, 28(9): 2616-2643.
[2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
[3] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440-1448.
[4] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[5] LU Dongchen, LI Dongmei, LI Yali, et al. OSKDet: orientation-sensitive keypoint localization for rotated object detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 1172-1182.
[6] XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3974-3983.
[7] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 21-37.
[8] 唐嘉潞, 杨钟亮, 张凇, 等. 结合显微视觉和注意力机制的毛羽检测方法[J]. 智能系统学报, 2022, 17(6): 1209-1219.
TANG Jialu, YANG Zhongliang, ZHANG Song, et al. Detection of yarn hairiness combining microscopic vision and attention mechanism[J]. CAAI transactions on intelligent systems, 2022, 17(6): 1209-1219.
[9] GUO Chaoxu, FAN Bin, ZHANG Qian, et al. AugFPN: improving multi-scale feature learning for object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 12592-12601.
[10] 吴珺, 董佳明, 刘欣, 等. 注意力优化的轻量目标检测网络及应用[J]. 智能系统学报, 2023, 18(3): 506-516.
WU Jun, DONG Jiaming, LIU Xin, et al. Attention-optimized lightweight object detection network and its application[J]. CAAI transactions on intelligent systems, 2023, 18(3): 506-516.
[11] 胡硕, 王洁, 孙妍, 等. 无人机视角下的多车辆跟踪算法研究[J]. 智能系统学报, 2022, 17(4): 798-805.
HU Shuo, WANG Jie, SUN Yan, et al. Research on multi-vehicle tracking algorithm from the perspective of UAV[J]. CAAI transactions on intelligent systems, 2022, 17(4): 798-805.
[12] FARHADI A, REDMON J. YOLOv3: an incremental improvement[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1804-2767.
[13] 曾文健, 朱艳, 沈韬, 等. 面向非对称特征注意力和特征融合的太赫兹图像检测[J]. 中国图象图形学报, 2022, 27(8): 2496-2505.
ZENG Wenjian, ZHU Yan, SHEN Tao, et al. Terahertz image detection combining asymmetric feature attention and feature fusion[J]. Journal of image and graphics, 2022, 27(8): 2496-2505.
[14] BOCHKOVSKIY A, WANG C. Y, LIAO H. M, et al. YOLOv4: optimal speed and accuracy of object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle: IEEE, 2020: 2-7.
[15] 张正, 马渝博, 柳长安, 等. 面向遥感图像旋转目标检测的双向衰减损失方法研究[J]. 电子与信息学报, 2023, 45(10): 3578-3586.
ZHANG Zheng, MA Yubo, LIU Chang’an, et al. Research on bidirectional attenuation loss method for rotating object detection in remote sensing image[J]. Journal of electronics & information technology, 2023, 45(10): 3578-3586.
[16] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999-3007.
[17] 曲海成, 王蒙, 柴蕊. 双向多尺度特征融合的高效遥感图像车辆检测[J]. 计算机工程与应用, 2024, 60(12): 346-356.
QU Haicheng, WANG Meng, CHAI Rui. Efficient remote sensing image vehicle detection with bidirectional multi-scale feature fusion [J]. Computer engineering and applications, 2024, 60(12): 346-356.
[18] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
[19] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[20] MEHTA S, RASTEGARI M. Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer[EB/OL]. (2021-10-05)[2023-11-26]. https://arxiv.org/abs/2110.02178.
[21] ZHANG Jiangning, LI Xiangtai, LI Jian, et al. Rethinking mobile block for efficient attention-based models[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 1389-1400.
[22] 郑哲, 雷琳, 孙浩, 等. FAGNet: 基于MAFPN和GVR的遥感图像多尺度目标检测算法[J]. 计算机辅助设计与图形学学报, 2021, 33(6): 883-894.
ZHENG Zhe, LEI Lin, SUN Hao, et al. FAGNet: A multi-scale object detection algorithm for remote sensing images based on MAFPN and GVR[J]. Journal of computer-aided design and computer graphics, 2021, 33(6): 883-894.
[23] 赵文清, 康怿瑾, 赵振兵, 等. 改进YOLOv5s的遥感图像目标检测[J]. 智能系统学报, 2023, 18(1): 86-95.
ZHAO Wenqing, KANG Yijin, ZHAO Zhenbing, et al. Remote sensing image object detection based on improved YOLOv5s[J]. CAAI transactions on intelligent systems, 2023, 18(1): 86-95.
[24] ZHAO Wenqing, KANG Yixin, CHEN Hao, et al. Adaptively attentional feature fusion oriented to multiscale object detection in remote sensing images[J]. IEEE transactions on instrumentation and measurement, 2023, 72: 1-11.
[25] YUE Chenke, YAN Junhua, ZHANG Yin, et al. SCFNet: Semantic correction and focus network for remote sensing image object detection[J]. Expert systems with applications, 2023, 224: 119980.
[26] LI Wentong, CHEN Yijie, HU Kaixuan, et al. Oriented reppoints for aerial object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 1829-1838.
[27] REN Shougang, FANG Zhiruo, GU Xingjian. A cross stage partial network with strengthen matching detector for remote sensing object detection[J]. Remote sensing, 2023, 15(6): 1574.
[28] CHEN Yixia, LIN Mingwei, HE Zhu, et al. Consistency-and dependence-guided knowledge distillation for object detection in remote sensing images[J]. Expert systems with applications, 2023, 229: 120519.
[29] NASCIMENTO M G, FAWCETT R, PRISACARIU V A Dsconv: efficient convolution operator[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 5148-5157.
Similar References:

Memo

-

Last Update: 2025-01-05

Copyright © CAAI Transactions on Intelligent Systems