[1]YANG Aofei,XU Xinying,XIE Gang,et al.Research on continual detection and localization method for printed circuit board defect[J].CAAI Transactions on Intelligent Systems,2025,20(1):219-229.[doi:10.11992/tis.202310024]
Copy

Research on continual detection and localization method for printed circuit board defect

References:
[1] DING Runwei, DAI Linhui, LI Guangpeng, et al. TDD-net: a tiny defect detection network for printed circuit boards[J]. CAAI transactions on intelligence technology, 2019, 4(2): 110-116.
[2] ADIBHATLA V A, CHIH H C, HSU C C, et al. Defect detection in printed circuit boards using you-only-look-once convolutional neural networks[J]. Electronics, 2020, 9(9): 1547.
[3] LIN Qiangqiang, ZHOU Jinzhu, MA Qiurui, et al. EMRA-net: a pixel-wise network fusing local and global features for tiny and low-contrast surface defect detection[J]. IEEE transactions on instrumentation measurement, 2022, 71: 3151926.
[4] 钱万明, 朱红萍, 朱泓知, 等. 基于自适应加权特征融合的PCB裸板缺陷检测研究[J]. 电子测量与仪器学报, 2022, 36(10): 92-99.
QIAN Wanming, ZHU Hongping, ZHU Hongzhi, et al. Research on defect detection of PCB bare board based on adaptive weighted feature fusion[J]. Journal of electronic measurement and instrumentation, 2022, 36(10): 92-99
[5] 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47(5): 1017-1034.
TAO Xian, HOU Wei, XU De. A survey of surface defect detection methods based on deep learning[J]. Acta automatica sinica, 2021, 47(5): 1017-1034.
[6] RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C]//Proceedingds of the 35th International conference on machine learning. Stockholm: PMLR, 2018: 4393-4402.
[7] LIZNERSKI P, RUFF L, VANDERMEULEN R A, et al. Explainable deep one-class classification[EB/OL]. (2020-07-03)[2023-10-19]. http://arxiv.org/abs/2007.01760v3.
[8] BERGMAN L, HOSHEN Y. Classification-based anomaly detection for general data[EB/OL]. (2020-05-05) [2023-10-19]. http://arxiv.org/abs/2005.02359v1.
[9] COHEN N, HOSHEN Y. Sub-image anomaly detection with deep pyramid correspondences[EB/OL]. (2020-05-05) [2023-10-19]. http://arxiv.org/abs/2005.02357v3.
[10] DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: A patch distribution modeling framework for anomaly detection and localization[C]//International Conference on Pattern Recognition. Cham: Springer, 2021: 475-489.
[11] ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 14298-14308.
[12] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: an overview[J]. IEEE signal processing magazine, 2018, 35(1): 53-65.
[13] 陈大鹏, 姚剑敏, 严群, 等. 基于自编码器结构改进的无监督图像异常检测[J]. 信息技术与信息化, 2023(8): 4-7.
CHEN Dapeng, YAO Jianmin, YAN Qun, et al. Unsupervised image anomaly detection based on improved autoencoder structure[J]. Information technology and informatization, 2023(8): 4-7.
[14] WANG Guodong, HAN Shumin, DING Errui, et al. Student-teacher feature pyramid matching for anomaly detection[EB/OL]. (2021-03-07)[2023-10-19]. http://arxiv.org/abs/2103.04257v3.
[15] BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4182-4191.
[16] 秦荣荣, 高晓蓉, 罗林, 等. 基于注意力反向知识蒸馏的车轮踏面异常检测[J]. 激光与光电子学进展, 2023, 60(24): 230-239.
QIN Rongrong, GAO Xiaorong, LUO Lin, et al. Wheel tread anomaly detection based on attentional reverse knowledge distillation[J]. Laser & optoelectronics progress, 2023, 60(24): 230-239.
[17] KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the national academy of science, 2017, 114(13): 3521-3526.
[18] LI Zhizhong, HOIEM D. Learning without forgetting[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(12): 2935-2947.
[19] 张静宇, 续欣莹, 谢刚, 等. 基于弹性权重巩固与知识蒸馏的垃圾持续分类[J]. 智能系统学报, 2023, 18(4): 878-885.
ZHANG Jingyu, XU Xinying, XIE Gang, et al. Continuous classification of garbage based on the elastic weight consolidation and knowledge distillation[J]. CAAI transactions on intelligent systems, 2023, 18(4): 878-885.
[20] LIU Hao, LIU Huaping. Continual learning with recursive gradient optimization[EB/OL]. (2022-01-29)[2023-10-19]. http://arxiv.org/abs/2201.12522v1.
[21] REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: incremental classifier and representation learning[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5533-5542.
[22] BUZZEGA P, BOSCHINI M, PORRELLO A, et al. Dark experience for general continual learning: a strong, simple baseline[EB/OL]. (2020-04-15)[2023-10-19]. http://arxiv.org/abs/2004.07211v2.
[23] HU Zhiyuan, LI Yunsheng, LYU Jiancheng, et al. Dense network expansion for class incremental learning[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 11858-11867.
[24] MALLYA A, LAZEBNIK S. PackNet: adding multiple tasks to a single network by iterative pruning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7765-7773.
[25] FERNANDO C, BANARSE D, BLUNDELL C, et al. PathNet: evolution channels gradient descent in super neural networks[EB/OL]. (2017-01-30)[2023-10-19]. http://arxiv.org/abs/1701.08734v1.
[26] 陈焕文. 网络分割与自适应突触可塑性融合的连续学习[J]. 华中科技大学学报(自然科学版), 2024, 52(3): 156-160.
CHEN Huanwen. Continual learning using split network and adaptive synaptic plasticity[J]. Journal of huazhong university of science and technology(natural science edition), 2024, 52(3): 156-160.
[27] PEZZE D D, ANELLO E, MASIERO C, et al. Continual learning approaches for anomaly detection[EB/OL]. (2022-11-21)[2023-10-19]. http://arxiv.org/abs/2212.11192v1.
[28] DENG Hanqiu, LI Xingyu. Anomaly detection via reverse distillation from one-class embedding[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 9727-9736.
[29] DOUILLARD A, CORD M, OLLION C, et al. PODNet: pooled outputs distillation for small-tasks incremental learning[C]//European Conference on Computer Vision. Cham: Springer, 2020: 86-102.
[30] KINGMA D P, BA J, HAMMAD M M. Adam: a method for stochastic optimization[EB/OL]. (2014-12-22)[2023-10-19]. http://arxiv.org/abs/1412.6980v9.
[31] TIEN T D, NGUYEN A T, TRAN N H, et al. Revisiting reverse distillation for anomaly detection[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 24511-24520.
[32] ZAVRTANIK V, KRISTAN M, SKO?AJ D. DRAEM-A discriminatively trained reconstruction embedding for surface anomaly detection[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 8310-8319.
Similar References:

Memo

-

Last Update: 2025-01-05

Copyright © CAAI Transactions on Intelligent Systems