[1]LI Su,YUAN Zhigao,WANG Cong,et al.Optimization of support vector machine parameters based on group intelligence algorithm[J].CAAI Transactions on Intelligent Systems,2018,13(1):70-84.[doi:10.11992/tis.201707011]

Optimization of support vector machine parameters based on group intelligence algorithm

[1] VAPNIK V N. Statistical learning theory[M]. New York: Wiley Press, 1999.
[2] POOLE A, KOTSIALOS A. Swarm intelligence algorithms for macroscopic traffic flow model validation with automatic assignment of fundamental diagrams[J]. Applied soft computing, 2016, 38: 134-150.
[3] DE Sá A O, NEDJAH N, DE MACEDO MOURELLE L. Distributed efficient localization in swarm robotic systems using swarm intelligence algorithms[J]. Neurocomputing, 2016, 172: 322-336.
[4] RAMADAN H S, BENDARY A F, NAGY S. Particle swarm optimization algorithm for capacitor allocation problem in distribution systems with wind turbine generators[J]. International journal of electrical power and energy systems, 2017, 84: 143-152.
[5] KEERTHI S S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms[J]. IEEE transactions on neural networks, 2002, 13(5): 1225-1229.
[6] CHAPELLE O, VAPNIK V, BOUSQUET O, et al. Choosing multiple parameters for support vector machines[J]. Machine learning, 2002, 46(1/2/3): 131-159.
[7] HOLLAND J H. Adaptation in natural and artificial systems[M]. 2nd ed. Cambridge: MIT Press, 1992.
[8] 吴君, 张京娟. 采用遗传算法的多机自由飞行冲突解脱策略[J]. 智能系统学报, 2013, 8(1): 16-20.
WU Jun, ZHANG Jingjuan. Conflict resolution of multiple airplanes in free flight based on the genetic algorithm[J]. CAAI transactions on intelligent systems, 2013, 8(1): 16-20.
[9] DIABAT A, DESKOORES R. A hybrid genetic algorithm based heuristic for an integrated supply chain problem[J]. Journal of manufacturing systems, 2016, 38: 172-180.
[10] CHEN Peng, YUAN Lifen, HE Yigang, et al. An improved SVM classifier based on double chains quantum genetic algorithm and its application in analogue circuit diagnosis[J]. Neurocomputing, 2016, 211: 202-211.
[11] AVCI E. Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM[J]. Expert systems with applications, 2009, 36(2): 1391-1402.
[12] HUANG C L, WANG C J. A GA-based feature selection and parameters optimizationfor support vector machines[J]. Expert systems with applications, 2006, 31(2): 231-240.
[13] 王琼瑶, 何友全, 彭小玲. 基于改进遗传算法的支持向量机参数优化方法[J]. 计算机与现代化, 2015(3): 33-36.
WANG Qiongyao, HE Youquan, PENG Xiaoling. Parameters optimization of support vector machine based on improved genetic algorithm[J]. Computer and modernization, 2015(3): 33-36.
[14] 孟滔, 周新志, 雷印杰. 基于自适应遗传算法的SVM参数优化[J]. 计算机测量与控制, 2016, 24(9): 215-217, 223.
MENG Tao, ZHOU Xinzhi, LEI Yinjie. A parameters optimization method for an SVM based on adaptive genetic algorithm[J]. Computer measurement and control, 2016, 24(9): 215-217, 223.
[15] 高雷阜, 张秀丽, 佟盼. GA_SJ在SVM核参数优化中的应用[J]. 计算机工程与应用, 2015, 51(4): 110-114.
GAO Leifu, ZHANG Xiuli, TONG Pan. Application of GA_SJ in SVM parameter optimization[J]. Computer engineering and applications, 2015, 51(4): 110-114.
[16] SAJAN K S, KUMAR V, TYAGI B. Genetic algorithm based support vector machine for on-line voltage stability monitoring[J]. International journal of electrical power and energy systems, 2015, 73: 200-208.
[17] CHOU J S, CHENG Minyuan, WU Yuwei, et al. Optimizing parameters of support vector machine using fast messy genetic algorithm for dispute classification[J]. Expert systems with applications, 2014, 41(8): 3955-3964.
[18] DUAN Li, GUO Long, LIU Ke, et al. Characterization and classification of seven Citrus herbs by liquid chromatography-quadrupole time-of-flight mass spectrometry and genetic algorithm optimized support vector machines[J]. Journal of chromatography A, 2014, 1339: 118-127.
[19] DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE transactions on evolutionary computation, 1997, 1(1): 53-66.
[20] DORIGO M, STüTZLE T. Ant colony optimization[M]. Cambridge: MIT Press, 2004.
[21] 裴振兵, 陈雪波. 改进蚁群算法及其在机器人避障中的应用[J]. 智能系统学报, 2015, 10(1): 90-96.
PEI Zhenbing, CHEN Xuebo. Improved ant colony algorithm and its application in obstacle avoidance for robot[J]. CAAI transactions on intelligent systems, 2015, 10(1): 90-96.
[22] JABBARPOUR M R, ZARRABI H, JUNG J J, et al. A green ant-based method for path planning of unmanned ground vehicles[J]. IEEE access, 2017, 5: 1820-1832.
[23] WANG Lei, CAI Jingcao, LI Ming, et al. Flexible job shop scheduling problem using an improved ant colony optimization[J]. Scientific programming, 2017, 2017: 9016303.
[24] 汪镭, 吴启迪. 蚁群算法在连续空间寻优问题求解中的应用[J]. 控制与决策, 2003, 18(1): 45-48, 57.
WANG Lei, WU Qidi. Ant system algorithm in continuous space optimization[J]. Control and decision, 2003, 18(1): 45-48, 57.
[25] 肖国荣. 改进蚁群算法和支持向量机的网络入侵检测[J]. 计算机工程与应用, 2014, 50(3): 75-78.
XIAO Guorong. Network intrusion detection by combination of improved ACO and SVM[J]. Computer engineering and applications, 2014, 50(3): 75-78.
[26] 高雷阜, 张秀丽, 王飞. 改进蚁群算法在SVM参数优化研究中的应用[J]. 计算机工程与应用, 2015, 51(13): 139-144.
GAO Leifu, ZHANG Xiuli, WANG Fei. Application of improved ant colony algorithm in SVM parameter optimization selection[J]. Computer engineering and applications, 2015, 51(13): 139-144.
[27] ZHANG Xiaoli, CHEN Wei, WANG Baojian, et al. Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization[J]. Neurocomputing, 2015, 167: 260-279.
[28] HAN Pu, GAO Fang, ZHAI Yongjie, et al. Coal ASH fusion temperature model based on SVM optimized by ACO[C]//Proceedings of Symposium on ICT and Energy Efficiency and Workshop on Information Theory and Security. Dublin, Ireland, 2012: 101-105.
[29] AALIZADEH R, VON DER OHE P C, THOMAIDIS N S. Prediction of acute toxicity of emerging contaminants on the water flea daphnia magna by ant colony optimization-support vector machine QSTR models[J]. Environmental science: processes and impacts, 2017, 19(3): 438-448.
[30] ALWAN H B, KU-MAHAMUD K R. Mixed-variable ant colony optimisation algorithm for feature subset selection and tuning support vector machine parameter[J]. International journal of bio-inspired computation, 2017, 9(1): 53-63.
[31] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Perth, WA, Australia, 1995: 1942-1948.
[32] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]∥Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995: 39-43.
[33] ZHANG Yang, LIU Yuncai. Traffic forecasting using least squares support vector machines[J]. Transportmetrica, 2009, 5(3): 193-213.
[34] 沈继红, 王侃. 求解旅行商问题的混合粒子群优化算法[J]. 智能系统学报, 2012, 7(2): 174-182.
SHEN Jihong, WANG Kan. The light ray particle swarm optimization for solving the traveling salesman problem[J]. CAAI transactions on intelligent systems, 2012, 7(2): 174-182.
[35] WANG Xibin, LUO Fengji, SANG Chunyan, et al. Personalized movie recommendation system based on support vector machine and improved particle swarm optimization[J]. IEICE transactions on information and systems, 2017, E100-D(2): 285-293.
[36] 单黎黎, 张宏军, 王杰, 等. 一种改进粒子群算法的混合核ε-SVM参数优化及应用[J]. 计算机应用研究, 2013, 30(6): 1636-1639.
SHAN Lili, ZHANG Hongjun, WANG Jie, et al. Parameters optimization and implementation of mixed kernels ε-SVM based on improved PSO algorithm[J]. Application research of computers, 2013, 30(6): 1636-1639.
[37] 毛耀宗, 陈珂, 江弋, 等. 基于粒子群算法与图形处理器加速的支持向量机参数优化方法[J]. 厦门大学学报: 自然科学版, 2013, 52(5): 609-612.
MAO Yaozong, CHEN Ke, JIANG Yi, et al. Parameter optimization of SVM based on particle swarm optimization algorithm and GPU acceleration[J]. Journal of Xiamen university: natural science, 2013, 52(5): 609-612.
[38] 王喜宾, 张小平, 王翰虎. 基于粒子群优化模式搜索的支持向量机参数优化及应用[J]. 计算机应用, 2011, 31(12): 3302-3304, 3326.
WANG Xibin, ZHANG Xiaoping, WANG Hanhu. Parameter optimization of support vector machine and application based on particle swarm optimization mode search[J]. Journal of computer applications, 2011, 31(12): 3302-3304, 3326.
[39] 胡云艳, 彭敏放, 田成来, 等. 基于粒子群算法优化支持向量机的模拟电路诊断[J]. 计算机应用研究, 2012, 29(11): 4053-4055.
HU Yunyan, PENG Minfang, TIAN Chenglai, et al. Analog circuit fault diagnosis based on particle swarm optimization SVM[J]. Application research of computers, 2012, 29(11): 4053-4055.
[40] 郭凤仪, 郭长娜, 王爱军, 等. 基于粒子群优化支持向量机的煤矿水位预测模型[J]. 计算机工程与科学, 2012, 34(7): 177-181.
GUO Fengyi, GUO Changna, WANG Aijun, et al. The forecast model of mine water discharge based on particle swarm optimization and support vector machines[J]. Computer engineering and science, 2012, 34(7): 177-181.
[41] GüRAKSIN G E, HAKLI H, U?UZ H. Support vector machines classification based on particle swarm optimization for bone age determination[J]. Applied soft computing, 2014, 24: 597-602.
[42] HARISH N, MANDAL S, RAO S, et al. Particle Swarm Optimization based support vector machine for damage level prediction of non-reshaped berm breakwater[J]. Applied soft computing, 2015, 27: 313-321.
[43] ZHANG Xuedong, TIAN Li, WANG Yong. Application of support vector machine model based on particle swarm optimization for the evaluation of products’ kansei image[J]. Open cybernetics and systemics journal, 2014, 8: 85-92.
[44] 李晓磊, 邵之江, 钱积新. 一种基于动物自治体的寻优模式: 鱼群算法[J]. 系统工程理论与实践, 2002, 22(11): 32-38.
LI Xiaolei, SHAO Zhijiang, QIAN Jixin. An optimizing method based on autonomous animats: fish-swarm algorithm[J]. Systems engineering-theory and practice, 2002, 22(11): 32-38.
[45] 李晓磊, 钱积新. 基于分解协调的人工鱼群优化算法研究[J]. 电路与系统学报, 2003, 8(1): 1-6.
LI Xiaolei, QIAN Jixin. Studies on artificial fish swarm optimization algorithm based on decomposition and coordination techniques[J]. Journal of circuits and systems, 2003, 8(1): 1-6.
[46] GE Hongwei, SUN Liang, CHEN Xin, et al. An Efficient artificial fish swarm model with estimation of distribution for flexible job shop scheduling[J]. International journal of computational intelligence systems, 2016, 9(5): 917-931.
[47] ZHANG Shuying, ZHAO Xiaohui, LIANG Cong, et al. Adaptive power allocation schemes based on IAFS algorithm for OFDM-based cognitive radio systems[J]. International journal of electronics, 2017, 104(1): 1-15.
[48] 高雷阜, 赵世杰, 高晶. 人工鱼群算法在SVM参数优化选择中的应用[J]. 计算机工程与应用, 2013, 49(23): 86-90.
GAO Leifu, ZHAO Shijie, GAO Jing. Application of artificial fish-swarm algorithm in SVM parameter optimization selection[J]. Computer engineering and applications, 2013, 49(23): 86-90.
[49] 田海雷, 李洪儒, 许葆华. 基于改进人工鱼群算法的支持向量机预测[J]. 计算机工程, 2013, 39(4): 222-225.
TIAN Hailei, LI Hongru, XU Baohua. Support vector machine prediction based on improved artificial fish swarm algorithm[J]. Computer engineering, 2013, 39(4): 222-225.
[50] 朱文静, 白静. 一种混沌人工鱼群算法对SVM参数的优化及应用[J]. 微电子学与计算机, 2016, 33(3): 89-93.
ZHU Wenjing, BAI Jing. A Chaos artificial fish swarm algorithm for parameters optimization and application of support vector machine[J]. Microelectronics and computer, 2016, 33(3): 89-93.
[51] 冯晓琳, 宁芊, 雷印杰, 等. 基于改进型人工鱼群算法的支持向量机参数优化[J]. 计算机测量与控制, 2016, 24(5): 237-241.
FENG Xiaolin, NING Qian, LEI Yinjie, et al. Support vector machine parameter optimization based on improved artificial fish swarm algorithm[J]. Computer measurement and control, 2016, 24(5): 237-241.
[52] BAI Jing, YANG Lihong, ZHANG Xueying. Parameter optimization and application of support vector machine based on parallel artificial fish swarm algorithm[J]. Journal of software, 2013, 8(3): 673-679.
[53] LIN Kuancheng, CHEN S Y, HUNG J C. Feature selection and parameter optimization of support vector machines based on modified artificial fish swarm algorithms[J]. Mathematical problems in engineering, 2015, 2015: 604108.
[54] LIN Kuancheng, CHEN S Y, HUNG J C. Botnet detection using support vector machines with artificial fish swarm algorithm[J]. Journal of applied mathematics, 2014, 2014: 986428.
[55] KARABOGA D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri: Computer Engineering Department, 2005.
[56] NG K K H, LEE C K M. Makespan minimization in aircraft landing problem under congested traffic situation using modified artificial bee colony algorithm[C]//Proceedings of 2016 IEEE International Conference on Industrial Engineering and Engineering Management. Bali, Indonesia, 2016: 750-754.
[57] 刘敏, 邹杰, 冯星, 等. 人工蜂群算法的无人机航路规划与平滑[J]. 智能系统学报, 2011, 6(4): 344-349.
LIU Min, ZOU Jie, FENG Xing, et al. Smooth trajectory planning of an unmanned aerial vehicle using an artificial bee colony algorithm[J]. CAAI transactions on intelligent systems, 2011, 6(4): 344-349.
[58] SUNDAR S, SUGANTHAN P N, JIN C T, et al. A hybrid artificial bee colony algorithm for the job-shop scheduling problem with no-wait constraint[J]. Soft computing, 2016, 21(5): 1193-1202.
[59] 吴少华, 单剑锋. 基于改进蜂群算法的数字信号调制识别[J]. 计算机技术与发展, 2016, 26(7): 46-50.
WU Shaohua, SHAN Jianfeng. A modulation identification algorithm for digital signals based on modified artificial bee colony algorithm[J]. Computer technology and development, 2016, 26(7): 46-50.
[60] 刘霞, 张姗姗, 胡铭鉴. 基于混沌人工蜂群算法优化的SVM齿轮故障诊断[J]. 吉林大学学报: 信息科学版, 2015, 33(4): 476-484.
LIU Xia, ZHANG Shanshan, HU Mingjian. SVM optimization based on chaotic artificial colony algorithm gear fault diagnosis[J]. Journal of Jilin university: information science edition, 2015, 33(4): 476-484.
[61] 刘铭, 黄凡玲, 傅彦铭, 等. 改进的人工蜂群优化支持向量机算法在入侵检测中的应用[J]. 计算机应用与软件, 2017, 34(1): 230-235, 246.
LIU Ming, HUANG Fanling, FU Yanming, et al. Application of improved support vector machine algorithm optimized by artificial bee colony algorithm in intrusion detection[J]. Computer applications and software, 2017, 34(1): 230-235, 246.
[62] 李璟民, 郭敏. 人工蜂群算法优化支持向量机的分类研究[J]. 计算机工程与应用, 2015, 51(2): 151-155.
LI Jingmin, GUO Min. Study on classification of artificial bee colony algorithm to optimization of support vector machine[J]. Computer engineering and applications, 2015, 51(2): 151-155.
[63] YANG Dalian, LIU Yilun, LI Songbai, et al. Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm[J]. Mechanism and machine theory, 2015, 90: 219-229.
[64] BUI D T, TUAN T A, HOANG N D, et al. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization[J]. Landslides, 2017, 14(2): 447-458.
[65] MUSTAFFA Z, YUSOF Y, KAMARUDDIN S S. Enhanced artificial bee colony for training least squares support vector machines in commodity price forecasting[J]. Journal of computational science, 2014, 5(2): 196-205.
[66] KRISHNANAND K N, GHOSE D. Glowworm swarm optimisation: a new method for optimising multi-modal functions[J]. International journal of computational intelligence studies, 2009, 1(1): 93-119.
[67] 郭丽萍, 李向涛, 谷文祥, 等. 改进的萤火虫算法求解阻塞流水线调度问题[J]. 智能系统学报, 2013, 8(1): 33-38.
GUO Liping, LI Xiangtao, GU Wenxiang, et al. An improved firefly algorithm for the blocking flow shop scheduling problem[J]. CAAI transactions on intelligent systems, 2013, 8(1): 33-38.
[68] RAY A, DE D. An energy efficient sensor movement approach using multi-parameter reverse glowworm swarm optimization algorithm in mobile wireless sensor network[J]. Simulation modelling practice and theory, 2016, 62: 117-136.
[69] 杨海, 丁毅, 沈海斌. 基于改进萤火虫算法的SVM核参数选取[J]. 计算机应用与软件, 2015, 32(6): 256-258, 287.
YANG Hai, DING Yi, SHEN Haibin. SVM kernel parameter selection based on improved gso[J]. Computer applications and software, 2015, 32(6): 256-258, 287.
[70] 李茜楠, 苏红军. 基于萤火虫算法的高光谱遥感波段选择方法[J]. 遥感技术与应用, 2014, 29(5): 761-770.
LI Qiannan, SU Hongjun. A novel hyperspectral band selection method using improved firefly algorithm[J]. Remote sensing technology and application, 2014, 29(5): 761-770.
[71] 刘玉坤, 夏栋梁, 马丽. 基于AGSO-LSSVM的热点话题预测模型[J]. 重庆邮电大学学报: 自然科学版, 2014, 26(6): 803-808.
LIU Yukun, XIA Dongliang, MA Li. Hot topic prediction model based on AGSO-LSSVM[J]. Journal of Chongqing university of posts and telecommunications: natural science edition, 2014, 26(6): 803-808.
[72] YANG Xinshe. A new metaheuristic bat-inspired algorithm[C]//Proceedings of Nature Inspired Cooperative Strategies for Optimization. Berlin, Heidelberg, Germany, 2010: 65-74.
[73] YANG Xinshe, HE Xingshi. Bat algorithm: literature review and applications[J]. International journal of bio-inspired computation, 2013, 5(3): 141-149.
[74] YANG Xinshe, GANDOMI A H. Bat algorithm: a novel approach for global engineering optimization[J]. Engineering computations, 2012, 29(5): 464-483.
[75] DHAR S, ALAM S, SANTRA M, et al. A novel method for edge detection in a gray image based on human psychovisual phenomenon and Bat algorithm[C]//Proceedings of Computer Communication and Electrical Technology. Murshidabad, India, 2017: 3-7.
[76] ZHOU Yongquan, LUO Qifang, XIE Jian, et al. A hybrid bat algorithm with path relinking for the capacitated vehicle routing problem[M]//YANG Xinshe, BEKDA? G, NIGDELI S M. Metaheuristics and Optimization in Civil Engineering. Cham, Germany, 2016: 255-276.
[77] SATHYA M R, ANSARI M M T. Load frequency control using bat inspired algorithm based dual mode gain scheduling of PI controllers for interconnected power system[J]. International journal of electrical power and energy systems, 2015, 64: 365-374.
[78] 魏峻. 一种有效的支持向量机参数优化算法[J]. 计算机技术与发展, 2015, 25(12): 97-100, 104.
WEI Jun. An effective parameter optimization algorithm of support vector machine[J]. Computer technology and development, 2015, 25(12): 97-100, 104.
[79] THARWAT A, HASSANIEN A E, ELNAGHI B E. A BA-based algorithm for parameter optimization of support vector machine[J]. Pattern recognition letters, 2017, 93: 13-22.
[80] TUBA E, TUBA M, SIMIAN D. Handwritten digit recognition by support vector machine optimized by bat algorithm[C]//Proceedings of the 24th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision. 2016: 369-376.
[81] XING Bing, GAN Rong, LIU Guodong, et al. Monthly mean streamflow prediction based on bat algorithm-support vector machine[J]. Journal of hydrologic engineering, 2016, 21(2): 04015057.
[82] ZHU Guangyu, ZHANG Weibo. An improved shuffled frog-leaping algorithm to optimize component pick-and-place sequencing optimization problem[J]. Expert systems with applications, 2014, 41(15): 6818-6829.
[83] 曾燕, 成新文, 陈欲云. 改进混合蛙跳算法在蔬菜总黄酮软测量中的应用[J]. 计算机与应用化学, 2015, 32(3): 356-360.
ZENG Yan, CHENG Xinwen, CHEN Yuyun. The application of improved shuffled frog leaping algorithm in soft measurement on total flavonoids of the vegetable[J]. Computers and applied chemistry, 2015, 32(3): 356-360.
[84] PAN Wenchao. A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge-based systems, 2012, 26: 69-74.
[85] 宁剑平, 王冰, 李洪儒, 等. 递减步长果蝇优化算法及应用[J]. 深圳大学学报: 理工版, 2014, 31(4): 367-373.
NING Jianping, WANG Bing, LI Hongru, et al. Research on and application of diminishing step fruit fly optimization algorithm[J]. Journal of Shenzhen university: science and engineering, 2014, 31(4): 367-373.
[86] SI Lei, WANG Zhongbin, LIU Xinhua, et al. Identification of shearer cutting patterns using vibration signals based on a least squares support vector machine with an improved fruit fly optimization algorithm[J]. Sensors, 2016, 16(1): 90.
[87] CONG Yuliang, WANG Jianwei, LI Xiaolei. Traffic flow forecasting by a least squares support vector machine with a fruit fly optimization algorithm[J]. Procedia engineering, 2016, 137: 59-68.
[88] 马家辰, 武冠群, 马立勇, 等. 基于细菌觅食算法和支持向量机的表情识别[J]. 计算机工程与设计, 2015, 36(7): 1881-1885.
MA Jiachen, WU Guanqun, MA Liyong, et al. Facial expression recognition based on bacteria foraging algorithm and support vector machine[J]. Computer engineering and design, 2015, 36(7): 1881-1885.
[89] 杨大炼, 刘义伦, 李学军, 等. 基于细菌觅食优化决策的齿轮箱故障诊断[J]. 中南大学学报: 自然科学版, 2015, 46(4): 1224-1230.
YANG Dalian, LIU Yilun, LI Xuejun, et al. Gearbox fault diagnosis based on bacterial foraging algorithm optimization decisions[J]. Journal of Central South university: science and technology, 2015, 46(4): 1224-1230.
[90] Yang Xinshe. Flower pollination algorithm for global optimization[C]//Procedings of the 11th International Conference on Unconventional Computation and Natural Computation. Berlin, Heidelberg, Germany, 2012: 240-249.
[91] HOANG N D, BUI D T, LIAO Kuowwei. Groutability estimation of grouting processes with cement grouts using differential flower pollination optimized support vector machine[J]. Applied soft computing, 2016, 45: 173-186.
[92] ZHANG Wenyu, QU Zongxi, ZHANG Kequan, et al. A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting[J]. Energy conversion and management, 2017, 136: 439-451.
[93] 王萍萍, 王翰虎. 一种支持向量机参数优化的GA-Powell算法[J]. 计算机技术与发展, 2013, 23(2): 15-18.
WANG Pingping, WANG Hanhu. A GA-powell algorithm for parameter optimization of support vector machine[J]. Computer technology and development, 2013, 23(2): 15-18.
[94] 耿俊豹, 孙林凯, 陈是学. 支持向量机的混合核函数参数优选方法[J]. 计算机应用, 2013, 33(5): 1321-1323, 1356.
GENG Junbao, SUN Linkai, CHEN Shixue. Parameters optimization of combined kernel function for support vector machine[J]. Journal of computer applications, 2013, 33(5): 1321-1323, 1356.
[95] 倪志伟, 朱旭辉, 程美英. 基于人工鱼群和分形维数融合SVM的空气质量预测方法[J]. 模式识别与人工智能, 2016, 29(12): 1122-1131.
NI Zhiwei, ZHU Xuhui, CHENG Meiying. Air quality prediction method based on fish swarm and fractal dimension[J]. Pattern recognition and artificial intelligence, 2016, 29(12): 1122-1131.
[96] 冯哲, 陈云凤, 周宇, 等. 基于改进的NCSPSO-AFSA对SVM参数的优化及其应用[J]. 江苏科技大学学报: 自然科学版, 2014, 28(4): 395-402.
FENG Zhe, CHEN Yunfeng, ZHOU Yu, et al. Parameter optimization and application of SVM based on improved NCSPSO and AFSA[J]. Journal of Jiangsu university of science and technology: natural science edition, 2014, 28(4): 395-402.
[97] 刘俊芳. 粒子群和人工蜂群的混合优化算法优化SVM参数及应用[D]. 太原, 中国: 太原理工大学, 2012.
LIU Junfang. A hybrid algorithm of PSO and ABC used to optimize the parameters of SVM and its application[D]. Taiyuan, China: Taiyuan University of Technology, 2012.
[98] 戴上平, 宋永东. 基于遗传算法与粒子群算法的支持向量机参数选择[J]. 计算机工程与科学, 2012, 34(10): 113-117.
DAI Shangping, SONG Yongdong. Parameter selection of support vector machines based on the fusion of genetic algorithm and the particle swarm optimization[J]. Computer engineering and science, 2012, 34(10): 113-117.
Similar References:



Last Update: 2018-02-01

Copyright © CAAI Transactions on Intelligent Systems