[1]WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11(6):788-798.[doi:10.11992/tis.201609006]

Research and development of computer games

[1] 徐心和, 邓志立, 王骄, 等. 机器博弈研究面临的各种挑战[J]. 智能系统学报, 2008, 3(4):288-293. XU Xinhe, DENG Zhili, WANG Jiao, et al. Challenging issues facing computer game research[J]. CAAI transactions on intelligent systems, 2008, 3(4):288-293.
[2] 徐心和. 计算机博弈--对于人类思维的挑战[J]. 中国科技博览, 2009(34):194-195.
[3] SILVER D, HUANG Ajia, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489.
[4] BENCH-CAPON T J M, DUNNE P E. Argumentation in artificial intelligence[J]. Artificial intelligence, 2007, 171(10/15):619-641.
[5] PENNISI E. Breakthrough of the year:human genetic variation[J]. Science, 2007, 318(5858):1842-1843.
[6] SHANNON C E. Programming a computer for playing chess[J]. Philosophical magazine, 1950, 41(314):2562275.
[7] BERNSTEIN A, ARBUCKLE T, DE V ROBERTS M, et al. A chess playing program for the IBM 704[C]//Proceedings of the May 6-8, 1958, Western Joint Computer Conference:Contrasts in Computers. New York, NY, USA:ACM, 1958:157-159.
[8] SAMUEL A L. Some studies in machine learning using the game of checkers. II:recent progress[J]. IBM journal of research and development, 1967, 11(6):601-617.
[9] FULLER S H, GASCHNIG J G, GILLOGLY J J. Analysis of the alpha-beta pruning algorithm[R]. Carnegie:Carnegie Mellon University, 1973.
[10] KORF R E. Depth-first iterative-deepening:an optimal admissible tree search[J]. Artificial intelligence, 1985, 27(1):97-109.
[11] ROIZEN I, PEARL J. A minimax algorithm better than alpha-beta? Yes and No[J]. Artificial intelligence, 1983, 21(1/2):199-220.
[12] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536.
[13] GELLY S, SILVER D. Combining online and offline knowledge in UCT[C]//Proceedings of the 24th International Conference on Machine Learning. New York, USA:ACM, 2007:273-280.
[14] 李之棠, 陈华民. 博弈树并行搜索算法[J]. 小型微型计算机系统, 1998, 19(10):53-56. LI Zhitang, CHEN Huamin. Parallel game-tree search[J]. Mini-micro systems, 1998, 19(10):53-56.
[15] DAVID-TABIBI O, KOPPEL M, NETANYAHU N S. Genetic algorithms for automatic search tuning[J]. ICGA journal, 2010, 33(2):67-79.
[16] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[17] WU I C, CHANG H C. Threat-based proof search for Connect 6[R]. Taiwan, China:National Chiao Tung University, 2006.
[18] 徐心和, 王骄. 中国象棋计算机博弈关键技术分析[J]. 小型微型计算机系统, 2006, 27(6):961-969. XU Xinhe, WANG Jiao. Key technologies analysis of Chinese chess computer game[J]. Mini-micro systems, 2006, 27(6):961-969.
[19] 王骄, 王涛, 罗艳红, 等. 中国象棋计算机博弈系统评估函数的自适应遗传算法实现[J]. 东北大学学报:自然科学版, 2005, 26(10):949-952. WANG Jiao, WANG Tao, LUO Yanhong, et al. Implementation of adaptive genetic algorithm of evaluation function in Chinese chess computer game system[J]. Journal of northeastern university:natural science, 2005, 26(10):949-952.
[20] 魏钦刚, 王骄, 徐心和, 等. 中国象棋计算机博弈开局库研究与设计[J]. 智能系统学报, 2007, 2(1):85-89. WEI Qingang, WANG Jiao, XU Xinhe, et al. A study and design of opening-book of computer Chinese Chess[J]. CAAI transactions on intelligent systems, 2007, 2(1):85-89.
[21] 徐长明, 南晓斐, 王骄, 等. 中国象棋机器博弈的时间自适应分配策略研究[J]. 智能系统学报, 2006, 1(2):39-43. XU Changming, NAN Xiaofei, WANG Jiao, et al. Adaptive time allocation strategy in computer game of Chinese Chess[J]. CAAI transactions on intelligent systems, 2006, 1(2):39-43.
[22] LIU Zhiqing, DOU Qing. Automatic pattern acquisition from game records in GO[J]. The journal of China universities of posts and telecommunications, 2007, 14(1):100-105.
[23] LIU Zhiqing, DOU Qing, LI Wenhong, et al. Automatic acquisition of pattern collocations in GO[J]. The journal of China universities of posts and telecommunications, 2008, 15(1):61-67.
[24] 马骁, 王轩, 王晓龙. 一类非完备信息博弈的信息模型[J]. 计算机研究与发展, 2010, 47(12):2100-2109. MA Xiao, WANG Xuan, WANG Xiaolong. The information model for a class of imperfect information game[J]. Journal of computer research and development, 2010, 47(12):2100-2109.
[25] ZHANG Jiajia, WANG Xuan, LIN Jing, et al. UCT algorithm in imperfect information multi-player military chess game[C]//Proceedings of the 11th Joint Conference on Information Sciences. Atlantis Press, 2008:1-9.
[26] WANG X, XU Zhaoyang, MA X. TD (Λ) optimization of imperfect information game’s evaluation function[R]. Japan:WCCGC, 2007.
[27] XIA Zhengyou, ZHU Yongping, LU Hui. Using the loopy belief propagation in Siguo[J]. ICGA journal, 2007, 30(4):209-220.
[28] XIA Zhengyou, ZHU Yongping, LU Hui. Evaluation function for siguo game based on two attitudes[C]//Proceedings of the Third International Conference on Fuzzy Systems and Knowledge Discovery. Berlin Heidelberg:Springer, 2006:1322-1331.
[29] BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[M]//SCH?LKOPF B, PLATT J, HOFMANN T. Advances in Neural Information Processing Systems, vol 19. Cambridge:MIT Press, 2007:153-160.
[30] COULOM R. Computing "Elo ratings" of move patterns in the game of go[J]. ICGA journal, 2007, 30(4):198-208.
[31] FERREIRA D R. Determining the strength of chess players based on actual play[J]. ICGA journal, 2012, 35(1):3-19.
[32] NIJSSEN J A M, WINANDS M H M. Search policies in multi-player games1[J]. ICGA journal, 2013, 36(1):3-21.
[33] LEIFKER D B, KANAL L N. A hybrid SSS*/Alpha-Beta algorithm for parallel search of game trees[C]//Proceedings of the 9th International Joint Conference on Artificial Intelligence. San Francisco, CA, USA:ACM, 1985, 2:1044-1046.
[34] PLAAT A, SCHAEFFER J, PIJLS W, et al. Best-first fixed-depth game-tree search in practice[C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA, USA:ACM, 1995, 1:273-279.
[35] BURNS E, LEMONS S, ZHOU Rong, et al. Best-first heuristic search for multi-core machines[C]//Proceedings of the 21st International Jont Conference on Artifical Intelligence. San Francisco, CA, USA:ACM, 2009:449-455.
[36] 王骄, 徐心和. 计算机博弈:人工智能的前沿领域--全国大学生计算机博弈大赛[J]. 计算机教育, 2012(7):14-18.
[37] 邱虹坤. 全国计算机博弈大赛网站[EB/OL].[2016-04-22]. 2013.
[38] 张利群. 实现苏拉卡尔塔棋网络博弈平台的吃子算法[J]. 计算机工程与应用, 2016, 52(7):62-66. ZHANG Liqun. Realization of capture algorithm about Surakarta chess network battle platform in computer game[J]. Computer engineering and applications, 2016, 52(7):62-66.
[39] 张小川, 陈光年, 张世强, 等. 六子棋博弈的评估函数[J]. 重庆理工大学学报:自然科学版, 2010, 24(2):64-68. ZHANG Xiaochuan, CHEN Guangnian, ZHANG Shiqiang, et al. Research on evaluation functions for computer game of connect 6[J]. Journal of Chongqing university of technology:natural science, 2010, 24(2):64-68.
[40] 李淑琴, 李静波, 韩裕华, 等. 苏拉卡尔塔博弈系统中评估函数的研究[J]. 北京信息科技大学学报, 2012, 27(6):42-45, 61. LI Shuqin, LI Jingbo, HAN Yuhua, et al. The assessment function in the Surakarta game system[J]. Journal of Beijing information science and technology university, 2012, 27(6):42-45, 61.
[41] TANG Pingzhong, LIN Fangzhen. Discovering theorems in game theory:two-person games with unique pure Nash equilibrium payoffs[J]. Artificial intelligence, 2011, 175(14/15):2010-2020.
[42] RUBIN J, WATSON I. Case-based strategies in computer poker[J]. AI communications, 2012, 25(1):19-48.
[43] FLESCH J, KUIPERS J, SCHOENMAKERS G, et al. Subgame-perfection in free transition games[J]. European journal of operational research, 2013, 228(1):201-207.
[44] GILPIN A, SANDHOLM T. Lossless abstraction of imperfect information games[J]. Journal of the ACM, 2007, 54(5):25.
[45] 何大华, 陈传波. 关于桥牌的取胜策略[J]. 华中科技大学学报:自然科学版, 2004, 32(7):13-15. HE Dahua, CHEN Chuanbo. The strategy for winning bridge game[J]. Journal of Huazhong university of science & technology:nature science edition, 2004, 32(7):13-15.
[46] CHEN Bonian, LIU Pangfeng, HSU S C, et al. Aggregating consistent endgame knowledge in Chinese Chess[J]. Knowledge-based systems, 2012, 34:34-42.
[47] 郭琴琴, 李淑琴, 包华. 亚马逊棋机器博弈系统中评估函数的研究[J]. 计算机工程与应用, 2012, 48(34):50-54. GUO Qinqin, LI Shuqin, BAO Hua. Research on evaluation function computer game of Amazon[J]. Computer engineering and applications, 2012, 48(34):50-54.
[48] SCHADD M P D, WINANDS M H M. Best reply search for multiplayer games[J]. IEEE transactions on computational intelligence and AI in games, 2011, 3(1):57-66.
[49] 李学俊, 王小龙, 吴蕾, 等. 六子棋中基于局部"路"扫描方式的博弈树生成算法[J]. 智能系统学报, 2015, 10(2):267-272. LI Xuejun, WANG Xiaolong, WU Lei, et al. Game tree generation algorithm based on local-road scanning method for connect 6[J]. CAAI transactions on intelligent systems, 2015, 10(2):267-272.
[50] ETESSAMI K, LOCHBIHLER A. The computational complexity of evolutionarily stable strategies[J]. International journal of game theory, 2008, 37(1):93-113.
[51] 高强, 徐心和. 时间复杂性和空间复杂性研究[J]. 智能系统学报, 2014, 9(5):529-535. GAO Qiang, XU Xinhe. Research on time complexity and space complexity[J]. CAAI transactions on intelligent systems, 2014, 9(5):529-535.
[52] GAO Qiang, XU Xinhe. Research on the computational complexity of n x n Chinese chess[J]. ICGA journal, 2015, 38(1):47-53.
[53] VAN DER HERIK H J, UITERWIJK J W H M, VAN RIJSWIJCK J. Games solved:now and in the future[J]. Artificial intelligence, 2002, 134(1/2):277-311.
[54] KAINDL H, SHAMS R, HORACEK H. Minimax search algorithms with and without aspiration windows[J]. IEEE transactions on pattern analysis and machine intelligence, 1991, 13(12):1225-1235.
[55] LU Hui, XIA Zhengyou. AWT:aspiration with timer search algorithm in Siguo[C]//Proceedings of the 6th International Conference on Computers and Games. Berlin Heidelberg:Springer-Verlag, 2008:264-274.
[56] 邹竞. 基于MTD(f)的中国象棋人机博弈算法的设计与优化[J]. 计算机与数字工程, 2008, 36(9):38-43.ZOU Jing. Chinese chess algorithm design and optimize based on MTD(f)[J]. Computer & digital engineering, 2008, 36(9):38-43.
[57] 张明亮, 李凡长. 一种新的博弈树搜索方法[J]. 山东大学学报:工学版, 2009, 39(6):1-8. ZHANG Mingliang, LI Fanzhang. A new search method for a game tree[J]. Journal of Shandong university:engineering science, 2009, 39(6):1-8.
[58] 焦尚彬, 刘丁. 博弈树置换表启发式算法研究[J]. 计算机工程与应用, 2010, 46(6):42-45. JIAO Shangbin, LIU Ding. Research on translation table heuristic algorithm[J]. Computer engineering and applications, 2010, 46(6):42-45.
[59] DONKERS H H L M, UITERWIJK J W H M, VAN DER HERIK H J. Probabilistic opponent-model search[J]. Information sciences, 2001, 135(3/4):123-149.
[60] SCHAEFFER J. The History heuristic and alpha-beta search enhancements in practice[J]. IEEE transactions on pattern analysis and machine intelligence, 1989, 11(11):1203-1212.
[61] SAKUTA M, HASHIMOTO T, NAGASHIMA J, et al. Application of the killer-tree heuristic and the lambda-search method to lines of action[J]. Information sciences, 2003, 154(3/4):141-155.
[62] REINEFELD A, MARSLAND T A. Enhanced iterative-deepening search[J]. IEEE transactions on pattern analysis and machine intelligence, 1994, 16(7):701-710.
[63] MARSLAND T A, REINEFELD A, SCHAEFFER J. Low overhead alternatives to SSS[J]. Artificial intelligence, 1987, 31(2):185-199.
[64] PLAAT A, SCHAEFFER J, PIJLS W, et al. SSS*=alpha-beta + TT[J]. Computer Science, 2014, 8(1):25.
[65] BERLINER H. The B* tree search algorithm:a best-first proof procedure[J]. Artificial intelligence, 1979, 12(1):23-40.
[66] BERLINER H J, MCCONNELL C. B * probability based search[J]. Artificial intelligence, 1996, 86(1):97-156.
[67] LORENTZ R. Using evaluation functions in Monte-Carlo tree search[J]. Theoretical computer science, 2016, 644:106-113.
[68] GUEZ A, SILVER D, DAYAN P. Scalable and efficient Bayes-adaptive reinforcement learning based on Monte-Carlo tree search[J]. Journal of artificial intelligence research, 2013, 48(1):841-883.
[69] BROWNE C B, POWLEY E, WHITEHOUSE D, et al. A survey of Monte Carlo tree search methods[J]. IEEE transactions on computational intelligence and AI in games, 2012, 4(1):1-43.
[70] BAIER H, WINANDS M H M. Time management for Monte Carlo tree search[J]. IEEE transactions on computational intelligence and AI in games, 2016, 8(3):301-314.
[71] RAIKO T, PELTONEN J. Application of UCT search to the connection games of Hex, Y, * Star, and Renkula[C]//Proceedings of the Finnish AI Conference. Espoo, Finland, 2008.
[72] 吕艳辉, 宫瑞敏. 计算机博弈中估值算法与博弈训练的研究[J]. 计算机工程, 2012, 38(11):163-166. LV Yanhui, GONG Ruimin. Study on valuation algorithm and game training in computer game[J]. Computer engineering, 2012, 38(11):163-166.
[73] TAKEUCHI S, KANEKO T, YAMAGUCHI K. Evaluation of game Tree search methods by game records[J]. IEEE transactions on computational intelligence and AI in games, 2010, 2(4):288-302.
[74] LIEBERUM J. An evaluation function for the game of amazons[J]. Theoretical computer science, 2005, 349(2):230-244.
[75] MARSLAND T A, CAMPBELL M. Parallel search of strongly ordered game trees[J]. ACM computing surveys, 1982, 14(4):533-551.
[76] 刘建伟, 刘媛, 罗雄麟. 深度学习研究进展[J]. 计算机应用研究, 2014, 31(7):1921-1930, 1942. LIU Jianwei, LIU Yuan, LUO Xionglin. Research and development on deep learning[J]. Application research of computers, 2014, 31(7):1921-1930, 1942.
[77] XIE Fan, LIU Zhiqing, WANG Yu, et al. Systematic Improvement of Monte-Carlo Tree Search with Self-generated Neural-Networks Controllers[M]//BLUM C, BATTITI R. Learning and Intelligent Optimization:Lecture Notes in Computer Science. Berlin Heidelberg:Springer, 2010:228-231.
[78] 张小川, 唐艳, 梁宁宁. 采用时间差分算法的九路围棋机器博弈系统[J]. 智能系统学报, 2012, 7(3):278-282. ZHANG Xiaochuan, TANG Yan, LIANG Ningning. A 9×9 go computer game system using temporal difference[J]. CAAI transactions on intelligent systems, 2012, 7(3):278-282.
Similar References:



Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems