[1]SHAO Mingxu,WANG Fei,YIN Tenglong,et al.Research progress on the human lower limb biomechanical modeling[J].CAAI Transactions on Intelligent Systems,2015,10(4):518-527.[doi:10.3969/j.issn.1673-4785.201503039]

Research progress on the human lower limb biomechanical modeling

[1] DOLLAR A M, HERR H. Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art[J]. IEEE Transactions on Robotics, 2008, 24(1): 144-158.
[2] 吕厚山. 人工关节外科学[M]. 北京: 科学出版社, 2001: 1-799. LYU Houshan. Artificial Joint Surgery[M]. Beijing: Science Press, 2001: 1-799.
[3] MOEINZADEH M H, ENGIN A E, AKKAS N. Two-dimensional dynamic modeling of human knee joint[J]. Journal of Biomechanics, 1983, 16(4): 253-264.
[4] ROYER T, KOENIG M. Joint loading and bone mineral density in persons with unilateral, trans-tibial amputation[J]. Clinical Biomechanics, 2005, 20(10): 1119-1125.
[5] YANG C J, ZHANG J F, CHEN Y, et al. A review of exoskeleton-type systems and their key technologies[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222(8): 1599-1612.
[6] KAZEROONI H. Human augmentation and exoskeleton systems in Berkeley[J]. International Journal of Humanoid Robotics, 2007, 4(3): 575-605.
[7] BRAND R A. The biomechanics and motor control of human gait: normal, elderly, and pathological[M]. Waterloo: University of Waterloo Press, 1991: 14-15, 1-384.
[8] TUMER S T, ENGIN A E. Three-body segment dynamic model of the human knee[J]. Journal of Biomechanical Engineering, 1993, 115(4A): 350-356.
[9] MOEINZADEH M H, ENGIN A E, AKKAS N. Two-dimensional dynamic modeling of human knee joint[J]. Journal of Biomechanics, 1982, 15(4): 346.
[10] AYOUB M M. A 2-D simulation model for lifting activities[J]. Computers & Industrial Engineering, 1998, 35(3-4): 619-622.
[11] PANDY M G, ZAJAC F E, SIM E, et al. An optimal control model for maximum-height human jumping[J]. Journal of Biomechanics, 1990, 23(12): 1185-1198.
[12] SP?GELE T, KISTNER A, GOLLHOFER A. Modelling, simulation and optimisation of a human vertical jump[J]. Journal of Biomechanics, 1999, 32(5): 521-530.
[13] Anolg Devices, Inc. ADXL203 Data Sheet[DB/OL]. [2006-04-27]. http://www.analog.com/UploadedFiles/Data_Sheets/ADXL103_203.pdf.
[14] FAN Yuanjie, YIN Yuehong. Active and progressive exoskeleton rehabilitation using multisource information fusion from EMG and force-position EPP[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(12): 3314-3321.
[15] HANAVAN E P. A mathematical model of the human body.AD608463[R] [S.l.], 1964.
[16] BLAJER W, CZAPLICKI A. Modeling and inverse simulation of somersaults on the trampoline[J]. Journal of Biomechanics, 2001, 34(12): 1619-1629.
[17] ANDERSON F C, PANDY M G. Dynamic optimization of human walking[J]. Journal of Biomechanical Engineering, 2001, 123(5): 381-390.
[18] PEJHAN S, FARAHMAND F, PARNIANPOUR M. Design optimization of an above-knee prosthesis based on the kinematics of gait[C]//30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver, Canada, 2008: 4274-4277.
[19] 张国伟,宋伟刚.并联机器人动力学问题的Kane方法[J].系统仿真学报, 2004, 16(7): 1386-1391. ZHANG Guowei, SONG Weigang. A Kane formulation for the inverse dynamic of Stewart platform manipulator[J]. Journal of System Simulation, 2004, 16(7): 1386-1391.
[20] 刘延斌, 韩秀英,薛玉君,等.3-RRRT并联机器人动力学仿真[J].系统仿真学报, 2006, 18(7): 1962-1965. LIU Yanbin, HAN Xiuying, XUE Yujun, et al. Dynamics simulation of a 3-RRRT parallel robot[J]. Journal of System Simulation, 2006, 18(7): 1962-1965.
[21] TIBERT G. Deployable tenegrity structures for space application[R].Stockholm: Royal Institute of Technology, 2002.
[22] JENKYN T R, NICOL A C. A multi-segment kinematic model of the foot with a novel definition of forefoot motion for use in clinical gait analysis during walking[J]. Journal of Biomechanics, 2007, 40(14): 3271-3278.
[23] SMITH S L. Application of high-speed videography in sports analysis[C]//Proceedings of SPIE 1757, Ultrahigh- and High-Speed Photography, Videography, and Photonics. San Diego, USA, 1992: 118.
[24] NARUSE K, KAWAI S, KUKICHI T. Three-dimensional lifting-up motion analysis for wearable power assist device of lower back support[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada, 2005: 2959-2964.
[25] KIGUCHI K, HAYASHI Y. Estimation of joint torque for a myoelectric arm by genetic programming based on EMG signals[C]//IEEE World Automation Congress (WAC). Puerto Vallarta, Mexico, 2012: 1-4.
[26] SARTORI M, REGGIANI M, PAGELLO E, et al. Modeling the human knee for assistive technologies[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(9): 2642-2649.
[27] PATRINOS P, ALEXANDRIDIS A, NINOS K, et al. Variable selection in nonlinear modeling based on RBF networks and evolutionary computation[J]. International Journal of Neural Systems, 2010, 20(5): 365-379.
[28] SONG R, TONG K Y. Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations[J]. Medical and Biological Engineering and Computing, 2005, 43(4): 473-480.
[29] 金德闻,王人成,白彩勤. 电流变液智能下肢假肢摆动相控制原理与方法[J].清华大学学报:自然科学版, 1998, 38(2): 40-43. JIN Dewen, WANG Rencheng, BAI Caiqin. Swing phase control of intelligent lower limb prosthesis using electrorheological fluid[J]. Journal of Tsinghua University: Science and Technology, 1998, 38(2): 40-43.
[30] MARTINEZ-VILLALPANDO E C, MOONEY L, ELLIOTT G, et al. Antagonistic active knee prosthesis. A metabolic cost of walking comparison with a variable-damping prosthetic knee[C]//Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, USA, 2011: 8519-8522.
[31] 王斌锐,金英连,徐心和.仿生膝关节虚拟样机与协同仿真方法研究[J].系统仿真学报, 2006, 18(6): 1554-1557. WANG Binrui, JIN Yinglian, XU Xinhe. Virtual prototype and collaborative simulation of bionic knee joint[J]. Journal of System Simulation, 2006, 18(6): 1554-1557.
[32] 朱昌义. 单杠上人体摆动的凯恩动力学模型[J]. 成都体育学院学报, 2000, 26(6): 71-74. ZHU Changyi. Kaine dynamics model of human swing on the horizontal bar[J]. Journal of Chengdu Sport University, 2000, 26(6): 71-74.
[33] 刘明辉, 顾文锦, 陈占伏. 基于骨骼服的虚拟人体建模与仿真[J]. 海军航空工程学院学报, 2009, 24(2): 157-161. LIU Minghui, GU Wenjin, CHEN Zhanfu. Virtual human body modeling and simulation based on skeletal services[J]. Journal of Naval Aeronautical and Astronautical University, 2009, 24(2): 157-161.
[34] 沈凌, 孟青云, 喻洪流. 基于虚拟样机技术的下肢假肢结构设计与仿真[J]. 工程设计学报, 2011, 18(1): 34-38. SHEN Ling, MENG Qingyun, YU Hongliu. Design and simulation of leg prosthesis structure based on virtual prototype technology[J]. Journal of Engineering Design, 2011, 18(1): 34-38.
[35] MOURAGNON E, LHUILLIER M, DHOME M, et al. Monocular vision based SLAM for mobile robots[C]//IEEE International Conference on Pattern Recognition. Hong Kong, China, 2006, 3: 1027-1031.
[36] PRATT J, CHEW C M, TORRES A, et al. Virtual model control: An intuitive approach for bipedal locomotion[J]. The International Journal of Robotics Research, 2001, 20(2): 129-143.
[37] YUAN Shaoqiang, LIU Zhong, LI Xingshan. Modeling and simulation of robot based on Matlab/SimMechanics[C]//Proceedings of the 27th Chinese Control Conference. Kunming, China, 2008: 161-165.
[38] XU Guozheng, SONG Aiguo, LI Huijun. Control system design for an upper-limb rehabilitation robot[J]. Advanced Robotics, 2011, 25(1-2): 229-251.
[39] RARNJANI A N, CORSS P A. A Kalman filter model of an integrated land vehicle navigation system[J]. Journal of Navigation, 1995, 48(2): 293-302.
[40] HARDYK A T T. Force and power-velocity relationships in a multi-joint movement[D]. Pennsylvania State: The Pennsylvania State University, 2000: 102-123.
[41] FENN W O, MARSH B S. Muscular force at different speeds of shortening[J]. The Journal of Physiology, 1935, 85(3): 277-297.
[42] POLISSAR M J. Physical chemistry of contractile process in muscle. I. A physicochemical model of contractile mechanism[J]. The American Journal of Physiology, 1952, 168(3): 766-811.
[43] SHADMEHR R, ARBIB M. A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system[J]. Biological Cybernetics, 1992, 66(6): 463-477.
[44] VISSER J J, HOOGKAMER J E, BOBBERT M F, et al. Length and moment arm of human leg muscles as a function of knee and hip-joint angles[J]. European Journal of Applied Physiology and Occupational Physiology, 1990, 61(5-6): 453-460.
[45] AN K N, TAKAHASHI K, HARRIGAN T P, et al. Determination of muscle orientations and moment arms[J]. Journal of Biomechanical Engineering, 1984, 106(3): 280-282.
[46] OSU R, FRANKLIN D W, KATO H, et al. Short-and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG[J]. Journal of Neurophysiology, 2002, 88(2): 991-1004.
[47] 孙棕檀. 刚柔耦合系统分析动力学建模研究[D]. 哈尔滨: 哈尔滨工程大学, 2013: 44-56. SUN Zongtan. Research on dynamic modeling analysis of rigid flexible coupling system[D]. Harbin: Harbin Engineering University, 2013: 44-56.
[48] MENG Wei, DING Bo, ZHOU Zude, et al. An EMG-based force prediction and control approach for robot-assisted lower limb rehabilitation[J]. IEEE International Conference on Systems, Man, and Cybernetics. San Diego, USA, 2014: 2198-2203.
[49] 陈贵亮, 李长鹏, 赵月, 等. 下肢外骨骼康复机器人的动力学建模及神经网络辨识仿真[J]. 机械设计与制造, 2013, (11): 197-200. CHEN Guiliang, LI Changpeng, ZHAO Yue, et al. Dynamic modeling and neural network identification simulation for lower limbs exoskeletons rehabilitation robot[J]. Mechanical Design and Manufacture, 2013, (11): 197-200.
[50] KARAVAS N, AJOUDANI A, TSAGARAKIS N, et al. Tele-impedance based assistive control for a compliant knee exoskeleton[J]. Robotics and Autonomous Systems, 2014, doi: 10.1016/j.robot.2014.09.027.
Similar References:



Last Update: 2015-08-28

Copyright © CAAI Transactions on Intelligent Systems