[1]WANG Hong-ding,TONG Yun-hai,TAN Shao-hua,et al.Research progress on outlier mining[J].CAAI Transactions on Intelligent Systems,2006,1(1):67-73.

Research progress on outlier mining

[1]BARNETT V, LEWIS T. Outliers in statistical data:2nd[M]. NewYork : John Wiley & Sons, 1994.
[2]HAWKINS D. Identification of outliers[M]. London: Chapman and Hall, 1980.
[3]HAN Jiawei, KAMBER M. Data mining: concepts and techniques[M]. NewYo rk: Morgan Kaufmann Publishers, 2001.
[4]QI Hongwei,WANG Jue. A model for mining outliers from complex datasets[A]. In Proc of ACM SAC’04[C].Cyprus,2004.
[5]ARNING A, AGRAWAL R,RAGHAVAN P. A linear method for deviation dete ction in large databases[A]. In Proc of KDD’96[C]. Oregon:Portland, 1996.
[6]KIFER D, BENDAVID S,GEHRKE J.Detecting change in data streams[A]. In Pr oc of VLDB’04[C].Toronto, 2004.
[7]CAI Y D,CLUTTER D,PAPE G,et al. MAIDS: mining alarming incide nts from data streams[A]. In Proceedings of SIGMOD’04[C]. Paris,2004.
[8]BREUNING M M,KRIEGEL H P,NG R T, et al. LOF: Identifying dens itybased local outliers[A]. In Proc of SIGMOD’00[C]. Texas, 2000.
[9]HINNEBURG A, KEIM D A. An Efficient approach to clustering in lar ge multimedia databases with noise[A]. In Proc of KDD’98[C]. NY, 1998.
[10]李翠平,李盛恩,王??? 珊,等.一种基于约束的多维数据异常点挖掘方法[J]. 软件学报, 2003, 14(9):1571-1577.
?LI Cuiping, LI Shengen, WANG Shan, et al. A constraintbased multidimension al data exception mining approach[J]. Journal of Software, 2003, 14(9):1571-1577 .
[11]陆介平,倪巍伟,孙志辉.基于关联分析的高维空间异常点发现[J]. 应用科学学报, 2006, 24(1):60-63.
LU Jieping, NI Weiwei, SUN Zhihui. Discovery of high dimensional outliers b ased on association analysis[J]. Journal of Applied Science, 2006, 24(01):60-63.
[12]赵泽茂,何坤金,陈?? 鹏,等.Web日志文件的异常数据挖掘算法及其应用[J] .计算机工程, 2003, 29(17):195-197.
?ZHAO Zemao, HE Kunjin, CHEN Peng, et al. Algorithms for mining outlier data on web log and its application[J]. Computer Engineering, 2003, 29(17):195-197.
[13]AGGARWAL C C, YU P S. Outlier detection for high dimensional data[A]. In Proceedings of the SIGMOD’01[C].Santa Barbara:CA,2001.
[14]KNORR E M,NG R T, TUCAKOV V. Distancebased outliers: algorithms and appl ications[J]. The VLDB Journal, 2000, 8(3-4):237-253.
[15]RAMASWAMY S,RASTOGI R,SHIM K. Efficient algorithms for mining outliers f rom large data sets[A]. In Proc of SIGMOD’00[C]. Texas,2000.
[16]ARNING A, AGRAWAL R,RAGHAVAN P.A linear method for deviation detection in large databases[A]. In Proc of KDD’95[C].Montreals, 1995.
[17]KNORR E, NG R. Finding intensional knowledge of distance-based outl iers[A]. In Proc of VLDB’99[C].Edinburgh,1999.
[18]AGYEMANG M, BARKER K, ALHAJJ R. Framework for mining web content outliers [A]. In Proc of ACM SAC’04[C]. Cyprus, 2004.
[19]AGYEMANG M,BARKER K, ALHAJJ R. Mining web content outliers using structure oriented weighting techniques and N grams[A]. In Proc of ACM SAC’ 05[C]. NM, 2005.
[20]KNORR E, NG R. Algorithms for mining distancebased outliers in large datasets[A]. In Proc of VLDB’98[C]. NY,1998.
[21]AGRAWAL R,IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases[A]. In Proc of SIGMOD’93[C]. Was hington DC, 1993.
[22]BREIMAN L, FRIEDMAN J H, OLSHEN R A, et al. Classification and regress ion trees[M]. New York: Chapman & Hall, 1984.
[23]ESTER M, KRIEGEL H P, SANDER J, et al. A densitybased algorithm for d iscovering clusters in large spatial databases[A]. In Proc of KDD’96[C]. Oregon,Portland, 1996.
[24]NG R. HAN J. Efficient and effective clustering method for spatial d ata mining[A]. In Proc of VLDB’94[C]. Santiago,1994.
[25]KAYA A. Outlier effects on databases[A]. In Proc of ADVIS 2004[C]. Izmir:Turkey, 2004.
[26]JOHNSON T, KWOK I, Ng R. Fast computation of 2dimensional depth co ntours[A] In Proc KDD’98[C]. NY, 1998.
[27]ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH: an efficient data clustering method for very large databases[A]. In Proc. of SIGMOD’96[C]. Montreal, 1996.
[28]KNORR E, NG R. A unified motion of outliers: properties and compu tation[A]. In Proc of KDD’97[C]. California, 1997.
[29]JIN Wen,TUNG A K H,HAN Jiawei. Mining topn local outliers in large d atabases[A]. In Proc of SIGKDD’01[C]. California,2001.
[30]〖JP4〗AGRAWAL R, GEHRKE J, GUNOPULOS D,et al. Automatic subspace clustering of high dimensional data for data mining applications[A]. In Proc of SIGMOD’98 [C]. WA, 1998.
[31]WANG W, YANG J, MUNTZ R. STING: A statistical information grid approach to spatial data mining[A]. In Proc of VLDB’97[C]. Athens, 1997.
[32]SARAWAGI S, AGRAWAL R,MEGIDDO N. Discoverydriven exploration of OLAP da ta cubes[A]. In Proc.of EDBT’98[C]. Valencia, 1998.
[33]CHEN Zhiyuan, LI Chen, PEI Jian, et al. Recent progress on selected t opics in database research: a report from nine young chinese researchers working in united states[J]. JSCT, 2003, 18(5):538-552.
[34]GUHA S, MISHRA N, MOTWANI R,O’CALLAGHAN L. Clustering data streams[A]. In Proc of FOCS’00[C]. Redondo Beach,2000.
[35]O’CALLAGHAM L, MISHRA N, MEYESON A, et al. Streamingdata algorithms for high-quality clustering[A]. In Proc of FOCS’01[C]. Las Vegas, 200 1.
[36]DOMINGOS P, HULTEN G. Mining high-speed data streams[A]. In Proc of SIG KDD’00[C]. MA,2000.
[37]DOMINGOS P,HULTEN G, SPENCER L. Mining timechanging data st reams[A]. In Proc of SIGKDD’01[C]. California, 2001.
[38]MANKU G S, MOTWANI R. Approximate frequency counts over data streams[A]. In Proc of VLDB’02[C]. Hongkong,2002.
[39]CHARIKAR M,CHEN K, COLTON M F. Finding frequent items in data streams[ A]. In Proc of ICALP 2002[C]. Malaga, 2002.
[40]AGGARWAL C,HAN J, WANG J, et al. A framework for clustering evol ving data streams[A]. In Proc of VLDB’03[C]. Berlin, 2003.
Similar References:



Last Update: 2009-04-07

Copyright © CAAI Transactions on Intelligent Systems