[1]HUANG Xiaoke,LIU Haitao,WANG Peizhuang.The restricted Boltzmann machine fuses picture fuzzy information[J].CAAI Transactions on Intelligent Systems,2025,20(5):1103-1111.[doi:10.11992/tis.202412008]
Copy

The restricted Boltzmann machine fuses picture fuzzy information

References:
[1] 马世龙, 乌尼日其其格, 李小平. 大数据与深度学习综述[J]. 智能系统学报, 2016, 11(6): 728-742.
MA Shilong, WUNIRI Qiqige, LI Xiaoping. Deep learning with big data: state of the art and development[J]. CAAI transactions on intelligent systems, 2016, 11(6): 728-742.
[2] HINTON G E. On early inspiration[Z/OL]. (2024-10-09) [2024-10-20]. https://ting.eudic.net/webting/desktopplay?id=dc3354a2-85e1-11ef-8108005056866eda.
[3] 胡铭菲, 左信, 刘建伟. 深度生成模型综述[J]. 自动化学报, 2022, 48(1): 40-74.
HU Mingfei, ZUO Xin, LIU Jianwei. Survey on deep generative model[J]. Acta automatica sinica, 2022, 48(1): 40-74.
[4] ALBERICI D, CONTUCCI P, MINGIONE E. Deep Boltzmann machines: rigorous results at arbitrary depth[J]. Annales Henri poincaré, 2021, 22(8): 2619-2642.
[5] WANG Zhendong, ZENG Yong, LIU Yaodi, et al. Deep belief network integrating improved kernel-based extreme learning machine for network intrusion detection[J]. IEEE access, 2021, 9: 16062-16091.
[6] HAMMOUCHE R, ATTIA A, AKHROUF S, et al. Gabor filter bank with deep autoencoder based face recognition system[J]. Expert systems with applications, 2022, 197: 116743.
[7] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[C]//International Conference on Learning Representations. NewOrleans: ICLR, 2021: 1-22.
[8] CHEN Leiyu, LI Shaobo, BAI Qiang, et al. Review of image classification algorithms based on convolutional neural networks[J]. Remote sensing, 2021, 13(22): 4712.
[9] VRáBEL J, PO?íZKA P, KAISER J. Restricted Boltzmann machine method for dimensionality reduction of large spectroscopic data[J]. Spectrochimica acta part B: atomic spectroscopy, 2020, 167: 105849.
[10] TYAGI P K, AGRAWAL D. Automatic detection of sleep apnea from single-lead ECG signal using enhanced-deep belief network model[J]. Biomedical signal processing and control, 2023, 80: 104401.
[11] KOREN Y, RENDLE S, BELL R. Advances in collaborative filtering[M]//Recommender Systems Handbook. New York: Springer US, 2021: 91-142.
[12] 汪强龙, 高晓光, 吴必聪, 等. 受限玻尔兹曼机及其变体研究综述[J]. 系统工程与电子技术, 2024, 46(7): 2323-2345.
WANG Qianglong, GAO Xiaoguang, WU Bicong, et al. Review of research on restricted Boltzmann machine and its variants[J]. Systems engineering and electronics, 2024, 46(7): 2323-2345.
[13] GU Linyan, YANG Lihua, ZHOU Feng. Approximation properties of Gaussian-binary restricted Boltzmann machines and Gaussian-binary deep belief networks[J]. Neural networks, 2022, 153: 49-63.
[14] CHEN Zixiang, MA Wanqi, DAI Wei, et al. Conditional restricted Boltzmann machine for item recommendation[J]. Neurocomputing, 2020, 385: 269-277.
[15] 李晓慧, 汪西莉. 结合卷积受限玻尔兹曼机的CV图像分割模型[J]. 激光与光电子学进展, 2020, 57(4): 041018.
LI Xiaohui, WANG Xili. CV image segmentation model combining convolutional restricted Boltzmann machine[J]. Laser & optoelectronics progress, 2020, 57(4): 201-212.
[16] HINTON G E. Training products of experts by minimizing contrastive divergence[J]. Neural computation, 2002, 14(8): 1771-1800.
[17] LUO Weijian, JIANG Hao, HU Tianyang, et al. Training energy-based models with diffusion contrastive divergences[EB/OL]. (2023-07-04)[2024-10-20]. https://arxiv.org/abs/2307.01668.
[18] TERENIN A, SIMPSON D, DRAPER D. Asynchronous gibbs sampling[C]//International Conference on Artificial Intelligence and Statistics. [S. l. ]: PMLR, 2020: 144-154.
[19] CHEN C L P, ZHANG Chunyang, CHEN Long, et al. Fuzzy restricted Boltzmann machine for the enhancement of deep learning[J]. IEEE transactions on fuzzy systems, 2015, 23(6): 2163-2173.
[20] JANMAIJAYA M, SHUKLA A K, SETH T, et al. Interval type-2 fuzzy restricted Boltzmann machine for the enhancement of deep learning[C]//2019 IEEE International Conference on Fuzzy Systems. New Orleans: IEEE, 2019: 1-6.
[21] FENG Shuang, CHEN C L P. A fuzzy restricted Boltzmann machine: novel learning algorithms based on the crisp possibilistic mean value of fuzzy numbers[J]. IEEE transactions on fuzzy systems, 2018, 26(1): 117-130.
[22] 张健, 丁世飞, 张楠, 等. 受限玻尔兹曼机研究综述[J]. 软件学报, 2019, 30(7): 2073-2090.
ZHANG Jian, DING Shifei, ZHANG Nan, et al. Restricted Boltzmann machines: a review[J]. Journal of software, 2019, 30(7): 2073-2090.
[23] CUONG B C, KREINOVICH V. Picture fuzzy sets-a new concept for computational intelligence problems[C]//2013 Third World Congress on Information and Communication Technologies. Hanoi: IEEE, 2013: 1-6.
[24] ZHU Sijia, LIU Zhe. Distance measures of picture fuzzy sets and interval-valued picture fuzzy sets with their applications[J]. AIMS mathematics, 2023, 8(12): 29817-29848.
[25] LYU Xueqin, MENG Lingzheng, CHEN Chao, et al. Fuzzy removing redundancy restricted Boltzmann machine: improving learning speed and classification accuracy[J]. IEEE transactions on fuzzy systems, 2020, 28(10): 2495-2509.
[26] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[27] XIAO Han, RASUL K, VOLLGRAF R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms[EB/OL]. (2017-08-25)[2024-10-20]. https://arxiv.org/abs/1708.07747.
[28] COHEN G, AFSHAR S, TAPSON J, et al. EMNIST: Extending MNIST to handwritten letters[C]//2017 International Joint Conference on Neural Networks. Anchorage: IEEE, 2017: 2921-2926.
[29] CLANUWAT T, BOBER-IRIZAR M, KITAMOTO A, et al. Deep learning for classical Japanese literature[EB/OL]. (2018-12-03)[2024-10-20]. https://arxiv.org/abs/1812.01718.
[30] HSIEH P C, CHEN C P. Multi-task learning on MNIST image datasets[C]//International Conference on Learning Representations. Vancouver: OpenReview.net, 2018: 1-7.
[31] ACHARYA S, PANT A K, GYAWALI P K. Deep learning based large scale handwritten Devanagari character recognition[C]//2015 9th International Conference on Software, Knowledge, Information Management and Applications. Kathmandu: IEEE, 2015: 1-6.
[32] SOLTANZADEH H, RAHMATI M. Recognition of Persian handwritten digits using image profiles of multiple orientations[J]. Pattern recognition letters, 2004, 25(14): 1569-1576.
[33] KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[EB/OL]. (2009-04-08)[2024-12-11]. https://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf.
[34] 张艳霞. 基于受限玻尔兹曼机的深度学习模型及其应用[D]. 成都: 电子科技大学, 2016.
ZHANG Yanxia. Deep learning models and applications based on the restricted Boltzmann machine[D]. Chengdu: University of Electronic Science and Technology, 2016.
[35] GLASER P, HUANG K H, GRETTON A. Near-optimality of contrastive divergence algorithms[C]//Proceedings of the 38th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2024: 91036-91090.
[36] ZHENG Yujun, SHENG Weiguo, SUN Xingming, et al. Airline passenger profiling based on fuzzy deep machine learning[J]. IEEE transactions on neural networks and learning systems, 28(12): 2911-2923.
Similar References:

Memo

-

Last Update: 2025-09-05

Copyright © CAAI Transactions on Intelligent Systems