[1]ZHANG Xiongtao,CHEN Tianyu,ZHAO Kang,et al.TSK fuzzy classifier based on multi-teacher adaptive knowledge distillation[J].CAAI Transactions on Intelligent Systems,2025,20(5):1136-1147.[doi:10.11992/tis.202410028]
Copy

TSK fuzzy classifier based on multi-teacher adaptive knowledge distillation

References:
[1] 苏丽, 孙雨鑫, 苑守正. 基于深度学习的实例分割研究综述[J]. 智能系统学报, 2022, 17(1): 16-31.
SU Li, SUN Yuxin, YUAN Shouzheng. A survey of instance segmentation research based on deep learning[J]. CAAI transactions on intelligent systems, 2022, 17(1): 16-31.
[2] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
[3] 赵壮壮, 王骏, 潘祥, 等. 任务间共享和特有结构分解的多任务TSK模糊系统建模[J]. 智能系统学报, 2021, 16(4): 622-629.
ZHAO Zhuangzhuang, WANG Jun, PAN Xiang, et al. Multi-task TSK fuzzy system modeling based on inter-task common and special structure decomposition[J]. CAAI transactions on intelligent systems, 2021, 16(4): 622-629.
[4] 黄震华, 杨顺志, 林威, 等. 知识蒸馏研究综述[J]. 计算机学报, 2022, 45(3): 624-653.
HUANG Zhenhua, YANG Shunzhi, LIN Wei, et al. Knowledge distillation: a survey[J]. Chinese journal of computers, 2022, 45(3): 624-653.
[5] JIANG Yunliang, WENG Jiangwei, ZHANG Xiongtao, et al. A CNN-based born-again TSK fuzzy classifier integrating soft label information and knowledge distillation[J]. IEEE transactions on fuzzy systems, 2023, 31(6): 1843-1854.
[6] JúNIOR J S S, MENDES J, SOUZA F, et al. Distilling complex knowledge into explainable T–S fuzzy systems[J]. IEEE transactions on fuzzy systems, 2025, 33(3): 1037-1048.
[7] GU Xiangming, CHENG Xiang. Distilling a deep neural network into a Takagi-Sugeno-Kang fuzzy inference system[EB/OL]. (2020-10-10)[2024-10-22]. https://arxiv.org/abs/2010.04974v1.
[8] ZHANG Xiongtao, YIN Zezong, JIANG Yunliang, et al. Fuzzy knowledge distillation from high-order TSK to low-order TSK[EB/OL]. (2023-02-16)[2024-10-22]. https://arxiv.org/abs/2302.08038v1.
[9] ERDEM D, KUMBASAR T. Enhancing the learning of interval type-2 fuzzy classifiers with knowledge distillation[C]//2021 IEEE International Conference on Fuzzy Systems. Luxembourg: IEEE, 2021: 1-6.
[10] YOU Shan, XU Chang, XU Chao, et al. Learning from multiple teacher networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 1285-1294.
[11] WU M C, CHIU C T, WU K H. Multi-teacher knowledge distillation for compressed video action recognition on deep neural networks[C]//2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Brighton: IEEE, 2019: 2202-2206.
[12] PAL N R, PAL K, KELLER J M, et al. A possibilistic fuzzy c-means clustering algorithm[J]. IEEE transactions on fuzzy systems, 2005, 13(4): 517-530.
[13] VENKATACHALAM K, REDDY V P, AMUDHAN M, et al. An implementation of K-means clustering for efficient image segmentation[C]//2021 10th IEEE International Conference on Communication Systems and Network Technologies. Bhopal: IEEE, 2021: 224-229.
[14] ZHOU Ta, CHUNG F L, WANG Shitong. Deep TSK fuzzy classifier with stacked generalization and triplely concise interpretability guarantee for large data[J]. IEEE transactions on fuzzy systems, 2017, 25(5): 1207-1221.
[15] ALBAWI S, ABED MOHAMMED T, AL-ZAWI S. Understanding of a convolutional neural network[C]//2017 International Conference on Engineering and Technology. Antalya: IEEE, 2017: 1-6.
[16] QIN Bin, NOJIMA Y, ISHIBUCHI H, et al. Realizing deep high-order TSK fuzzy classifier by ensembling interpretable zero-order TSK fuzzy subclassifiers[J]. IEEE transactions on fuzzy systems, 2021, 29(11): 3441-3455.
[17] XUE Guangdong, WANG Jian, ZHANG Bingjie, et al. Double groups of gates based Takagi-Sugeno-Kang (DG-TSK) fuzzy system for simultaneous feature selection and rule extraction[J]. Fuzzy sets and systems, 2023, 469: 108627.
[18] CUI Yuqi, XU Yifan, PENG Ruimin, et al. Layer normalization for TSK fuzzy system optimization in regression problems[J]. IEEE transactions on fuzzy systems, 2023, 31(1): 254-264.
[19] 刘万军, 姜岚, 曲海成, 等. 融合CNN与Transformer的MRI脑肿瘤图像分割[J]. 智能系统学报, 2024, 19(4): 1007-1015.
LIU Wanjun, JIANG Lan, QU Haicheng, et al. MRI brain tumor image segmentation by fusing CNN and Transformer[J]. CAAI transactions on intelligent systems, 2024, 19(4): 1007-1015.
[20] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[21] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[22] WANG Wei, LI Yutao, ZOU Ting, et al. A novel image classification approach via dense-MobileNet models[J]. Mobile information systems, 2020, 2020(1): 7602384.
[23] TAN Mingxing, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning. California: PMLR, 2019: 6105-6114.
[24] 赵文竹, 袁冠, 张艳梅, 等. 多视角融合的时空动态GCN城市交通流量预测[J]. 软件学报, 2024, 35(4): 1751-1773.
ZHAO Wenzhu, YUAN Guan, ZHANG Yanmei, et al. Multi-view fused spatial-temporal dynamic GCN for urban traffic flow prediction[J]. Journal of software, 2024, 35(4): 1751-1773.
[25] ZHAO Ling, SONG Yujiao, ZHANG Chao, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE transactions on intelligent transportation systems, 2020, 21(9): 3848-3858.
[26] ABU-EL-HAIJA S, KAPOOR A, PEROZZI B, et al. N-GCN: multi-scale graph convolution for semi-supervised node classification[C]//Uncertainty in Artificial Intelligence. Tel Aviv: PMLR, 2020: 841-851.
[27] SUBAKAN C, RAVANELLI M, CORNELL S, et al. Attention is all you need in speech separation[C]//2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto: IEEE, 2021: 21-25.
[28] 任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6.
REN Huan, WANG Xuguang. Review of attention mechanism[J]. Journal of computer applications, 2021, 41(S1): 1-6.
[29] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis: Association for Computational Linguistics, 2019: 4171-4186.
[30] YANG Zhilin, DAI Zihang, YANG Yiming, et al. XLNet: generalized autoregressive pretraining for language understanding[C]//Proceedings of the 32nd Conference on Neural Information Processing Systems. Vancouver: NeurIPS, 2018: 5754-5764.
[31] HAUPT C E, MARKS M. AI-generated medical advice-GPT and beyond[J]. JAMA, 2023, 329(16): 1349-1350.
[32] CUI Kaiwen, YU Yingchen, ZHAN Fangneng, et al. KD-DLGAN: data limited image generation via knowledge distillation[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 3872-3882.
[33] GUO Ziyao, YAN Haonan, LI Hui, et al. Class attention transfer based knowledge distillation[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 11868-11877.
[34] GOU Jianping, XIONG Xiangshuo, YU Baosheng, et al. Multi-target knowledge distillation via student self-reflection[J]. International journal of computer vision, 2023, 131(7): 1857-1874.
[35] ZHANG Pu, SHANG Changjing, SHEN Qiang. Fuzzy rule interpolation with $K$-neighbors for TSK models[J]. IEEE transactions on fuzzy systems, 2022, 30(10): 4031-4043.
[36] TIAN Xiaobin, DENG Zhaohong, YING Wenhao, et al. Deep multi-view feature learning for EEG-based epileptic seizure detection[J]. IEEE transactions on neural systems and rehabilitation engineering, 2019, 27(10): 1962-1972.
Similar References:

Memo

-

Last Update: 2025-09-05

Copyright © CAAI Transactions on Intelligent Systems