[1]ZHAO Zhenbo,FU Tianyi,DONG Hongbin,et al.Decoupled feature mining rotational detector based on proposal enhancement[J].CAAI Transactions on Intelligent Systems,2025,20(5):1123-1135.[doi:10.11992/tis.202410017]
Copy

Decoupled feature mining rotational detector based on proposal enhancement

References:
[1] 蓝鑫, 吴淞, 伏博毅, 等. 深度学习的遥感图像旋转目标检测综述[J]. 计算机科学与探索, 2024, 18(4): 861-877.
LAN Xin, WU Song, FU Boyi, et al. Survey on deep learning in oriented object detection in remote sensing images[J]. Journal of frontiers of computer science and technology, 2024, 18(4): 861-877.
[2] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
[4] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21–37.
[5] 徐红明, 王兴华, 方诚, 等. 基于旋转不变性的高分辨率遥感影像船舶检测[J]. 中国航海, 2024, 47(2): 120-127.
XU Hongming, WANG Xinghua, FANG Cheng, et al. Rotation invariant object detection assisted ship identification from high-resolution remote sensing imagery[J]. Navigation of China, 2024, 47(2): 120-127.
[6] 牛为华, 郭迅. 基于改进YOLOv8的船舰遥感图像旋转目标检测算法[J]. 图学学报, 2024, 45(4): 726-735.
NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8[J]. Journal of graphics, 2024, 45(4): 726-735.
[7] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9626-9635.
[8] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(2): 318-327.
[9] YANG Ze, LIU Shaohui, HU Han, et al. RepPoints: point set representation for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9656–9665.
[10] DING Jian, XUE Nan, LONG Yang, et al. Learning RoI Transformer for oriented object detection in aerial images[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2844-2853.
[11] YANG Xue, YANG Jirui, YAN Junchi, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8231-8240.
[12] HAN Jiaming, DING Jian, LI Jie, et al. Align deep features for oriented object detection[J]. IEEE transactions on geoscience and remote sensing, 2021, 60: 5602511.
[13] YANG Xue, YAN Junchi, FENG Ziming, et al. R3det: refined single-stage detector with feature refinement for rotating object[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2021: 3163–3171.
[14] XIE Xingxing, CHENG Gong, WANG Jiabao, et al. Oriented R-CNN for object detection[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 3500-3509.
[15] DAI Linhui, LIU Hong, TANG Hao, et al. AO2-DETR: arbitrary-oriented object detection Transformer[J]. IEEE transactions on circuits and systems for video technology, 2023, 33(5): 2342-2356.
[16] 杨学, 严骏驰. 基于特征对齐和高斯表征的视觉有向目标检测[J]. 中国科学: 信息科学, 2023, 53(11): 2250-2265.
YANG Xue, YAN Junchi. Visual oriented object detection via feature alignment and Gaussian parameterization[J]. Scientia sinica (informationis), 2023, 53(11): 2250-2265.
[17] 涂可龙, 卿雅娴, 李真强, 等. EllipticNet: 基于椭圆方程的遥感有向目标检测[J]. 遥感学报, 2025, 29(3): 713-727.
TU Kelong, QING Yaxian, LI Zhenqiang, et al. EllipticNet: equation-based remote sensing oriented object detection network[J]. National remote sensing bulletin, 2025, 29(3): 713-727.
[18] 毛泽勇, 陈欣易, 丁俊峰, 等. 基于不确定性感知旋转目标检测的二次接线质检[J]. 计算机技术与发展, 2024, 34(10): 178-185.
MAO Zeyong, CHEN Xinyi, DING Junfeng, et al. Uncertainty-aware oriented object detection for trustworthy quality inspection of secondary wiring[J]. Computer technology and development, 2024, 34(10): 178-185.
[19] HAN Jiaming, DING Jian, XUE Nan, et al. ReDet: a rotation-equivariant detector for aerial object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S. l. ]: IEEE, 2021: 2786-2795.
[20] FENG Xiaoxu, YAO Xiwen, CHENG Gong, et al. Weakly supervised rotation-invariant aerial object detection network[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 14126-14135.
[21] 方婷婷, 刘斌, 陈春晖, 等. 视图一致性网络下的弱监督遥感影像旋转目标检测[J]. 遥感学报, 2024, 28(12): 3213-3230.
FANG Tingting, LIU Bin, CHEN Chunhui, et al. View-consistency network for weakly supervised oriented object detection in remote sensing images[J]. National remote sensing bulletin, 2024, 28(12): 3213-3230.
[22] ZHOU Yanzhao, YE Qixiang, QIU Qiang, et al. Oriented response networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4961-4970.
[23] ALEXEY D, LUCAS B, ALEXANDER K, et al. An image is worth 16x16 words Transformers for image recognition at scale[C]//International Conference on Learning Representations. [S. l. ]: OpenReview.net, 2021: 1-21.
[24] LIU Ze, LIN Yutong, CAO Yue, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992-10002.
[25] WU Yuhuan, LIU Yun, ZHAN Xin, et al. P2T: pyramid pooling Transformer for scene understanding[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(11): 12760-12771.
[26] ZHOU Xingyi, KOLTUN V, KR?HENBüHL P. Probabilistic two-stage detection[EB/OL]. (2021-3-12)[2024-11-21]. https://arxiv.org/abs/2103.07461v1.
[27] KIM K, LEE H S. Probabilistic anchor assignment with IoU prediction for object detection[C]//European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 355-371.
[28] 付天怡, 杨本翼, 董红斌, 等. 基于深度重塑的航拍目标检测增强网络[J]. 模式识别与人工智能, 2024, 37(7): 652-662.
FU Tianyi, YANG Benyi, DONG Hongbin, et al. Depth-reshaping based aerial object detection enhanced network[J]. Pattern recognition and artificial intelligence, 2024, 37(7): 652-662.
[29] ASHISH V, NOAM S, NIKI P, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. Long Beach: Springer, 2017: 1-11.
[30] ZHOU Yue, YANG Xue, ZHANG Gefan, et al. MMRotate: a rotated object detection benchmark using PyTorch[C]//Proceedings of the 30th ACM International Conference on Multimedia. Lisboa: ACM, 2022: 7331–7334.
[31] XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3974-3983.
[32] LIU Zikun, YUAN Liu, WENG Lubin, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]//Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods. Porto: SCITEPRESS-Science and Technology Publications, 2017: 324-331.
[33] LI Yuxuan, HOU Qibin, ZHENG Zhaohui, et al. Large selective kernel network for remote sensing object detection[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 16748-16759.
[34] YANG Xue, YAN Junchi, MING Qi, et al. Rethinking rotated object detection with Gaussian Wasserstein distance loss[C]//International Conference on Machine Learning. [S. l. ]: PMLR, 2021: 11830–11841.
[35] YANG Xue, YANG Xiaojiang, YANG Jirui, et al. Learning high-precision bounding box for rotated object detection via kullback-leibler divergence[C]//Advances in Neural Information Processing Systems. [S. l. ]: Curran Associates Inc., 2021: 18381–18394.
[36] PU Yifan, WANG Yiru, XIA Zhuofan, et al. Adaptive rotated convolution for rotated object detection[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 6566-6577.
[37] WANG Jiangshan, PU Yifan, HAN Yizeng, et al. GRA: detecting oriented objects through group-wise rotating and attention[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024: 298-315.
[38] CAI Xinhao, LAI Qiuxia, WANG Yuwei, et al. Poly kernel inception network for remote sensing detection[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 27706-27716.
[39] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
[40] CHEN Kai, PANG Jiangmiao, WANG Jiaqi, et al. Hybrid task cascade for instance segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4969-4978.
[41] LI Wentong, CHEN Yijie, HU Kaixuan, et al. Oriented RepPoints for aerial object detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 1819-1828.
[42] EVERINGHAM M, VAN G, WILLIAMS C K I, et al. The PASCAL visual object classes challenge 2007 (VOC2007) results[EB/OL]. (2007-06-07)[2024-12-20]. http://www.pascalnetwork.org/challenges/VOC/voc2007/workshop/index.html.
[43] EVERINGHAM M, VAN G, WILLIAMS C K I, et al. The PASCAL visual object classes challenge 2012 (VOC2012) results[EB/OL]. (2012-05-18)[2024-12-20]. http://www.pascalnetwork.org/challenges/VOC/voc2012/workshop/index.html.
[44] KOLEN J F, KREMER S C. Gradient flowin recurrent nets: the difficulty of learning longterm dependencies[J]. A field guide to dynamical recurrent networks, 2001, 237-243.
Similar References:

Memo

-

Last Update: 2025-09-05

Copyright © CAAI Transactions on Intelligent Systems