[1]ZHANG Xinyun,ZHOU Linjia,CHENG Yuting,et al.Domain adaptive Takagi-Sugeno-Kang fuzzy classifier based on pseudo-label refinement[J].CAAI Transactions on Intelligent Systems,2025,20(3):557-570.[doi:10.11992/tis.202408015]
Copy

Domain adaptive Takagi-Sugeno-Kang fuzzy classifier based on pseudo-label refinement

References:
[1] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2009, 22(10): 1345-1359.
[2] AJITH A, GOPAKUMAR G. Domain adaptation: a survey[M]//Computer Vision and Machine Intelligence. Singapore: Springer Nature Singapore, 2023: 591-602.
[3] 李晶晶, 孟利超, 张可, 等. 领域自适应研究综述[J]. 计算机工程, 2021, 47(6): 1-13.
LI Jingjing, MENG Lichao, ZHANG Ke, et al. Review of studies on domain adaptation[J]. Computer engineering, 2021, 47(6): 1-13.
[4] KOUW W M, LOOG M. A review of domain adaptation without target labels[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(3): 766-785.
[5] GOPALAN R, LI Ruonan, CHELLAPPA R. Domain adaptation for object recognition: an unsupervised approach[C]//2011 International Conference on Computer Vision. Barcelona: IEEE, 2011: 999-1006.
[6] GONG Boqing, SHI Yuan, SHA Fei, et al. Geodesic flow kernel for unsupervised domain adaptation[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence: USA. IEEE, 2012: 2066-2073.
[7] FERNANDO B, HABRARD A, SEBBAN M, et al. Unsupervised visual domain adaptation using subspace alignment[C]//2013 IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 2960-2967.
[8] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE transactions on neural networks, 2011, 22(2): 199-210.
[9] LONG Mingsheng, WANG Jianming, DING Guiguang, et al. Transfer feature learning with joint distribution adaptation[C]//2013 IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 2200-2207.
[10] TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE transactions on systems, man, and cybernetics: systems, 1985, SMC-15(1): 116-132.
[11] YANG Changjian, DENG Zhaohong, CHOI K S, et al. Takagi–Sugeno–Kang transfer learning fuzzy logic system for the adaptive recognition of epileptic electroencephalogram signals[J]. IEEE transactions on fuzzy systems, 2015, 24(5): 1079-1094.
[12] FENG Hao, PENG Yaxin, ZHANG Guixu, et al. Joint distribution adaptation based TSK fuzzy logic system for epileptic EEG signal identification[C]//2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Shenzhen: IEEE, 2016: 340-345.
[13] XU Peng, DENG Zhaohong, WANG Jun, et al. Transfer representation learning with TSK fuzzy system[J]. IEEE transactions on fuzzy systems, 2019, 29(3): 649-663.
[14] WANG Wei, LI Baopu, WANG Mengzhu, et al. Confidence regularized label propagation based domain adaptation[J]. IEEE transactions on circuits and systems for video technology, 2021, 32(6): 3319-3333.
[15] ZHANG Yuanpeng, WANG Guanjin, ZHOU Ta, et al. Takagi-Sugeno-Kang fuzzy system fusion: a survey at hierarchical, wide and stacked levels[J]. Information fusion, 2024, 101: 101977.
[16] CHUANG C C, HSIAO C C, JENG J T. Adaptive fuzzy regression clustering algorithm for TSK fuzzy modeling[C]//Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium. Kobe: IEEE, 2003: 201-206.
[17] ZHU Lin, CHUNG F L, WANG Shitong. Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 2009, 39(3): 578-591.
[18] TIAN Qing, SUN Heyang, PENG Shun, et al. Self-adaptive label filtering learning for unsupervised domain adaptation[J]. Frontiers of computer science, 2022, 17(1): 171308.
[19] BLITZER J, CRAMMER K, KULESZA A, et al. Learning bounds for domain adaptation[C]//Proceedings of the 21st International Conference on Neural Information Processing Systems. Vancouver: ACM, 2007: 129-136.
[20] SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains[M]//Computer Vision – ECCV 2010. Berlin: Springer Berlin Heidelberg, 2010: 213-226.
[21] GRIFFIN G, HOLUB A, PERONA P. Caltech-256 object category dataset[R]. California Institute of Technology, 2007.
[22] SIM T, BAKER S, BSAT M. The CMU pose, illumination, and expression (PIE) database[C]//Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition. Washington, DC: IEEE, 2002: 53-58.
[23] BLITZER J, DREDZE M, PEREIRA F. Biographies bollywood boom-boxes and blenders: Domain adaptation for sentiment classification[C]//Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. Prague: Association for Computational Linguistics, 2007, 7: 440-447.
[24] NOZZA D, FERSINI E, MESSINA E. Deep learning and ensemble methods for domain adaptation[C]//2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI). San Jose: IEEE, 2016: 184-189.
[25] LONG Mingsheng, WANG Jianmin, DING Guiguang, et al. Transfer joint matching for unsupervised domain adaptation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 1410-1417.
[26] SUN Baochen, FENG Jiashi, SAENKO K. Return of frustratingly easy domain adaptation[J]. Proceedings of the AAAI conference on artificial intelligence, 2016, 30(1): 2058-2065.
[27] ZHANG Jing, LI Wanqing, OGUNBONA P. Joint geometrical and statistical alignment for visual domain adaptation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5150-5158.
[28] ZHANG Wen, WU Dongrui. Discriminative joint probability maximum mean discrepancy (DJP-MMD) for domain adaptation[C]//2020 International Joint Conference on Neural Networks. Glasgow: IEEE, 2020: 1-8.
[29] WANG Jie, ZHANG Xiaolei. Improving pseudo labels with intra-class similarity for unsupervised domain adaptation[J]. Pattern recognition, 2023, 138: 109379.
[30] QIN Bin, NOJIMA Y, ISHIBUCHI H, et al. Realizing deep high-order TSK fuzzy classifier by ensembling interpretable zero-order TSK fuzzy subclassifiers[J]. IEEE transactions on fuzzy systems, 2021, 29(11): 3441-3455.
[31] 丁卫平, 顾卫江, 董建成, 等. 模糊逻辑推理在电子病历智能辅助诊断系统中的应用研究[J]. 南通大学学报(自然科学版), 2006, 5(4): 77-81.
DING Weiping, GU Weijiang, DONG Jiancheng, et al. Application of fuzzy logic reasoning in intelligent assistant diagnosis system of electronic patient record[J]. Journal of Nantong University (natural science), 2006, 5(4): 77-81.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems