[1]PENG Ziran,WANG Shunhao,XIAO Shenping.SOC and SOH estimation method of electric vehicle battery based on SDAE-DCPInformer[J].CAAI Transactions on Intelligent Systems,2025,20(4):969-983.[doi:10.11992/tis.202408010]
Copy

SOC and SOH estimation method of electric vehicle battery based on SDAE-DCPInformer

References:
[1] 黄钰期, 梅盼, 陈晓济, 等. 基于CFD分析的电动汽车电池包加热方法[J]. 浙江大学学报(工学版), 2019, 53(2): 207-213,219.
HUANG Yuqi, MEI Pan, CHEN Xiaoji, et al. Heating strategy for electric vehicular battery pack based on CFD analysis[J]. Journal of Zhejiang university (engineering science edition), 2019, 53(2): 207-213,219.
[2] 杨续来, 袁帅帅, 杨文静, 等. 锂离子动力电池能量密度特性研究进展[J]. 机械工程学报, 2023, 59(6): 239-254.
YANG Xulai, YUAN Shuaishuai, YANG Wenjing, et al. Research progress on energy density of Li-ion batteries for EVs[J]. Journal of mechanical engineering, 2023, 59(6): 239-254.
[3] 闫啸宇, 周思达, 卢宇, 等. 锂离子电池容量衰退机理与影响因素[J]. 北京航空航天大学学报, 2023, 49(6): 1402-1413.
YAN Xiaoyu, ZHOU Sida, LU Yu, et al. Degradation mechanism and influencing factors on lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1402-1413.
[4] 张青松, 赵启臣. 过充循环对锂离子电池老化及安全性影响[J]. 高电压技术, 2020, 46(10): 3390-3397.
ZHANG Qingsong, ZHAO Qichen. Effects of overcharge cycling on the aging and safety of lithium ion batteries[J]. High voltage engineering, 2020, 46(10): 3390-3397.
[5] 郭斌, 刘新华, 何瑢, 等. 锂离子电池性能衰减与热失控机制研究进展[J]. 稀有金属, 2024, 48(2): 225-239.
GUO Bin, LIU Xinhua, HE Rong, et al. Advances on mechanism of degradation and thermal runaway of lithium-ion batteries[J]. Chinese journal of rare metals, 2024, 48(2): 225-239.
[6] KUMAR R R, BHARATIRAJA C, UDHAYAKUMAR K, et al. Advances in batteries, battery modeling, battery management system, battery thermal management, SOC, SOH, and charge/discharge characteristics in EV applications[J]. IEEE access, 2023, 11: 105761-105809.
[7] SYLVESTRIN G R, SCHERER H F, HIDEO ANDO JUNIOR O. Hardware and software development of an open source battery management system[J]. IEEE Latin America transactions, 2021, 19(7): 1153-1163.
[8] THANGAVEL S, MOHANRAJ D, GIRIJAPRASANNA T, et al. A comprehensive review on electric vehicle: battery management system, charging station, traction motors[J]. IEEE access, 2023, 11: 20994-21019.
[9] HUANG Zexin, BEST M, KNOWLES J, et al. Adaptive piecewise equivalent circuit model with SOC/SOH estimation based on extended Kalman filter[J]. IEEE transactions on energy conversion, 2023, 38(2): 959-970.
[10] 赵光财, 林名强, 戴厚德, 等. 一种锂电池SOH估计的KNN-马尔科夫修正策略[J]. 自动化学报, 2021, 47(2): 453-463.
ZHAO Guangcai, LIN Mingqiang, DAI Houde, et al. A modified strategy using the KNN-Markov chain for SOH estimation of lithium batteries[J]. Acta automatica sinica, 2021, 47(2): 453-463.
[11] SHEN Ping, OUYANG Minggao, LU Languang, et al. The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles[J]. IEEE transactions on vehicular technology, 2018, 67(1): 92-103.
[12] 蔡涛, 张钊诚, 袁奥特, 等. 锂离子电池储能安全管理中的机器学习方法综述[J]. 电力系统保护与控制, 2022, 50(24): 178-187.
CAI Tao, ZHANG Zhaocheng, YUAN Aote, et al. Review of machine learning for safety management of li-ion battery energy storage[J]. Power system protection and control, 2022, 50(24): 178-187.
[13] 高昊天, 陈云霞. 基于机器学习的锂离子电池健康状态分类与预测[J]. 北京航空航天大学学报, 2023, 49(12): 3467-3475.
GAO Haotian, CHEN Yunxia. A machine learning based method for lithium-ion battery state of health classification and prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(12): 3467-3475.
[14] 毕贵红, 谢旭, 蔡子龙, 等. 动态条件下基于深度学习的锂电池容量估计[J]. 汽车工程, 2022, 44(6): 868-877,885.
BI Guihong, XIE Xu, CAI Zilong, et al. Capacity estimation of lithium-ion battery based on deep learning under dynamic conditions[J]. Automotive engineering, 2022, 44(6): 868-877,885.
[15] 毛玲, 温佳林, 赵晋斌, 等. 基于集成ELM的锂离子电池充电截止电压下的SOC和SOH联合估计[J]. 电力系统保护与控制, 2023, 51(11): 86-95.
MAO Ling, WEN Jialin, ZHAO Jinbin, et al. Joint estimation of SOC and SOH at lithium-ion battery charging cut-off voltage based on an ensemble extreme learning machine[J]. Power system protection and control, 2023, 51(11): 86-95.
[16] 王桥, 魏孟, 叶敏, 等. 基于GWO-LSTM与LSSVM的锂离子电池荷电状态与容量联合估计[J]. 汽车安全与节能学报, 2022, 13(3): 571-579.
WANG Qiao, WEI Meng, YE Min, et al. Co-estimation of state of charge and capacity of lithium-ion battery based on GWO optimized LSTM and LSSVM[J]. Journal of automotive safety and energy, 2022, 13(3): 571-579.
[17] 李超然, 肖飞, 樊亚翔, 等. 基于深度学习的锂离子电池SOC和SOH联合估算[J]. 中国电机工程学报, 2021, 41(2): 681-692.
LI Chaoran, XIAO Fei, FAN Yaxiang, et al. Joint estimation of the state of charge and the state of health based on deep learning for lithium-ion batteries[J]. Proceedings of the CSEE, 2021, 41(2): 681-692.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30: 6000-6010.
[19] 耿鑫月, 郑建飞, 胡昌华, 等. 多因素影响下双时间尺度退化设备剩余寿命预测[J/OL]. 哈尔滨工程大学学报, 2023: 1-8. (2023-09-05)[2024-08-03]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=HEBG20230904001&dbname=CJFD&dbcode=CJFQ.
GENG Xinyue, ZHENG Jianfei, HU Changhua, et al. Prediction of residual life of degraded equipment with double time scales under the influence of multiple factors[J/OL]. China industrial economics, 2023: 1-8. (2023-09-05)[2024-08-03]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=HEBG20230904001&dbname=CJFD&dbcode=CJFQ.
[20] GAO Mingyu, SHEN Handan, BAO Zhengyi, et al. A correlation-augmented informer-based method for state-of-health estimation of Li-ion batteries[J]. IEEE sensors journal, 2024, 24(3): 3342-3353.
[21] 张博玮, 郑建飞, 胡昌华, 等. 基于流模型的缺失数据生成方法在剩余寿命预测中的应用[J]. 自动化学报, 2023, 49(1): 185-196.
ZHANG Bowei, ZHENG Jianfei, HU Changhua, et al. Missing data generation method based on flow model and its application in remaining life prediction[J]. Acta automatica sinica, 2023, 49(1): 185-196.
[22] 欧阳天成, 徐裴行, 叶今禄, 等. 数据采集异常下的车用动力电池状态监测与故障诊断[J]. 中国电机工程学报, 2023, 43(15): 6040-6050.
OUYANG Tiancheng, XU Peixing, YE Jinlu, et al. States monitoring and fault diagnosis of vehicular power batteries under abnormal data acquisition[J]. Proceedings of the CESS, 2023, 43(15): 6040-6050.
[23] 吴晗, 王士同. 不完整数据分类与缺失信息重要性识别特权LSSVM[J]. 智能系统学报, 2023, 18(4): 743-753.
WU Han, WANG Shitong. Privileged LSSVM for classification and simultaneous importance identification of missing information on incomplete data[J]. CAAI transactions on intelligent systems, 2023, 18(4): 743-753.
[24] 尹杰, 刘博, 孙国兵, 等. 基于迁移学习和堆叠降噪自编码器-长短时间记忆的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(01): 289-302.
YIN Jie, LIU Bo, SUN Guobing, et al. Transfer learning dae-lstm for remaining useful life prediction of li-ion batteries[J]. Transactions of china electrotechnical society, 2024, 39(01): 289-302.
[25] 张洪生, 尚鑫磊. 基于DAE-BLS的锂离子电池剩余使用寿命预测方法[J]. 计算机集成制造系统, 2025, 31(3): 1038-1047.
ZHANG Hongsheng, SHANG Xinlei. Prediction method for remaining useful life of lithium-ion batteries based on DAE-BLS[J]. Computer integrated manufacturing systems, 2025, 31(3): 1038-1047.
[26] 原江鑫, 何莉萍, 李耀东, 等. 电动汽车BMS从控板热分析及散热优化[J]. 汽车工程, 2024, 46(1): 128-138.
YUAN Jiangxin, HE Liping, LI Yaodong, et al. Thermal analysis and optimization design of a BMS slave unit for electric vehicles[J]. Automotive engineering, 2024, 46(1): 128-138.
[27] 李青, 郭仲杰, 陈浩, 等. 面向多节电池管理系统的高精度电压监测技术[J]. 传感技术学报, 2020, 33(7): 950-955.
LI Qing, GUO Zhongjie, CHEN Hao, et al. High precision voltage monitoring technology for multi-cell battery management system[J]. Chinese journal of sensors and actuators, 2020, 33(7): 950-955.
[28] 蒋玮, 王晓东, 杨永标, 等. 电动汽车电池组智能管理及其无线传感器网络路由协议[J]. 电力系统自动化, 2015, 39(18): 62-68.
JIANG Wei, WANG Xiaodong, YANG Yongbiao, et al. Electric vehicle smart battery management and its wireless sensor network protocol[J]. Automation of electric power systems, 2015, 39(18): 62-68.
[29] ZHOU Haoyi, ZHANG Shanghang, PENG Jieqi, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2021: 11106-11115.
[30] 杜先君, 贾亮亮. 基于优化堆叠降噪自编码器的滚动轴承故障诊断[J]. 吉林大学学报(工学版), 2022, 52(12): 2827-2838.
DU Xianjun, JIA Liangliang. Fault diagnosis of rolling bearing based on optimized stacked denoising auto encoders[J]. Journal of Jilin University (engineering and technology edition), 2022, 52(12): 2827-2838.
[31] CHEN Zhiqiang, XU Tingbing, DU Changde, et al. Dynamical channel pruning by conditional accuracy change for deep neural networks[J]. IEEE transactions on neural networks and learning systems, 2021, 32(2): 799-813.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems