[1]ZHAO Dongyue,SHI Lei,DING Meng.Fingerprint pattern classification based on dual-branch attention mechanism[J].CAAI Transactions on Intelligent Systems,2025,20(4):936-945.[doi:10.11992/tis.202407005]
Copy

Fingerprint pattern classification based on dual-branch attention mechanism

References:
[1] 李硕, 赵朝阳, 屈音璇, 等. 深度学习技术在指纹识别中的应用[J]. 计算机工程, 2024, 50(12): 33-47.
LI Shuo, ZHAO Chaoyang, QU Yinxuan, et al. Application of deep learning in fingerprint recognition[J]. Computer engineering, 2024, 50(12): 33-47.
[2] 江健, 张琪, 王财勇. 基于深度学习的虹膜识别研究综述[J]. 计算机科学与探索, 2024, 18(6): 1421-1437.
JIANG Jian, ZHANG Qi, WANG Caiyong. Review of deep learning based iris recognition[J]. Journal of frontiers of computer science and technology, 2024, 18(6): 1421-1437.
[3] 许文正, 黄天欢, 贲晛烨, 等. 跨视角步态识别综述[J]. 中国图象图形学报, 2023, 28(5): 1265-1286.
XU Wenzheng, HUANG Tianhuan, BEN Xianye, et al. Cross-view gait recognition: a review[J]. Journal of image and graphics, 2023, 28(5): 1265-1286.
[4] WIN K N, LI Kenli, CHEN Jianguo, et al. Fingerprint classification and identification algorithms for criminal investigation: a survey[J]. Future generation computer systems, 2020, 110: 758-771.
[5] HENRY E R. Classification and uses of finger prints[M]. [S. l.]: HM Stationery office, 1928.
[6] CAO Kai, PANG Liaojun, LIANG Jimin, et al. Fingerprint classification by a hierarchical classifier[J]. Pattern recognition, 2013, 46(12): 3186-3197.
[7] JUNG H W, LEE J H. Noisy and incomplete fingerprint classification using local ridge distribution models[J]. Pattern recognition, 2015, 48(2): 473-484.
[8] LIU Manhua. Fingerprint classification based on singularities[C]//2009 Chinese Conference on Pattern Recognition. Nanjing: IEEE, 2009: 1-5.
[9] ANUSHA K, SIVA KUMAR P V. Fingerprint image enhancement for crime detection using deep learning[C]//Proceedings of the International Conference on Cognitive and Intelligent Computing. Singapore: Springer Nature Singapore, 2023: 257-268.
[10] LING Hefei, WU Jiyang, HUANG Junrui, et al. Attention-based convolutional neural network for deep face recognition[J]. Multimedia tools and applications, 2020, 79(9): 5595-5616.
[11] MICHELE A, COLIN V, SANTIKA D D. MobileNet convolutional neural networks and support vector machines for palmprint recognition[J]. Procedia computer science, 2019, 157: 110-117.
[12] DONIDA LABATI R, GENOVESE A, MU?OZ E, et al. A novel pore extraction method for heterogeneous fingerprint images using convolutional neural networks[J]. Pattern recognition letters, 2018, 113: 58-66.
[13] NOGUEIRA R F, DE ALENCAR LOTUFO R, CAMPOS MACHADO R. Fingerprint liveness detection using convolutional neural networks[J]. IEEE transactions on information forensics and security, 2016, 11(6): 1206-1213.
[14] 高梦婷, 孙晗, 唐云祁, 等. 基于改进YOLOv5的指纹二级特征检测方法[J]. 激光与光电子学进展, 2023, 60(10): 89-99.
GAO Mengting, SUN Han, TANG Yunqi, et al. Fingerprint second-order minutiae detection method based on improved YOLOv5[J]. Laser & optoelectronics progress, 2023, 60(10): 89-99.
[15] TANG Yao, GAO Fei, FENG Jufu. Latent fingerprint minutia extraction using fully convolutional network[C]//2017 IEEE International Joint Conference on Biometrics. Denver: IEEE, 2017: 117-123.
[16] MILITELLO C, RUNDO L, VITABILE S, et al. Fingerprint classification based on deep learning approaches: experimental findings and comparisons[J]. Symmetry, 2021, 13(5): 750.
[17] WANG Ruxin, HAN Congying, GUO Tiande. A novel fingerprint classification method based on deep learning[C]//2016 23rd International Conference on Pattern Recognition. Cancun: IEEE, 2016: 931-936.
[18] PERALTA D, TRIGUERO I, GARCíA S, et al. On the use of convolutional neural networks for robust classification of multiple fingerprint captures[J]. International journal of intelligent systems, 2018, 33(1): 213-230.
[19] 李伯男, 赵彤, 吴敏. 基于胶囊网络的海量指纹纹型精准分类算法[J]. 中国科学院大学学报, 2020, 37(3): 387-397.
LI Bonan, ZHAO Tong, WU Min. Fast exact classification algorithm of massive fingerprint patterns based on capsule network[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(3): 387-397.
[20] TERTYCHNYI P, OZCINAR C, ANBARJAFARI G. Low-quality fingerprint classification using deep neural network[J]. IET biometrics, 2018, 7(6): 550-556.
[21] 甘俊英, 戚玲, 项俐, 等. 轻量化多特征融合的指纹分类算法研究[J]. 信号处理, 2019, 35(5): 888-896.
GAN Junying, QI Ling, XIANG Li, et al. Research on lightweight multi-feature fusion fingerprint classification algorithm[J]. Journal of signal processing, 2019, 35(5): 888-896.
[22] JIAN Wen, ZHOU Yujie, LIU Hongming. Lightweight convolutional neural network based on singularity ROI for fingerprint classification[J]. IEEE access, 2020, 8: 54554-54563.
[23] HOU Yuejie, XIE Zaixin, HU Jian. An unsupervised deep-learning method for fingerprint classification: the ccae network and the hybrid clustering strategy[EB/OL]. (2021-09-12) [2024-07-02]. https://arxiv.org/pdf/2109.05526.
[24] FENG Jianjiang, ZHOU Jie, JAIN A K. Orientation field estimation for latent fingerprint enhancement[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(4): 925-940.
[25] YANG Jianwei, LIU Lifeng, JIANG Tianzi, et al. A modified Gabor filter design method for fingerprint image enhancement[J]. Pattern recognition letters, 2003, 24(12): 1805-1817.
[26] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999-3007.
[27] LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution[EB/OL]. (2022-09-16) [2024-07-02]. https://arxiv.org/pdf/2209.07947.pdf.
[28] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269.
[29] DAI Yimian, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 3560-3569.
[30] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[31] HOU Qibin, ZHOU Daquan, FENG Jiashi. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708-13717.
[32] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[33] TAN Mingxing, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. (2019-05-28)[2024-06-21]. https://arxiv.org/abs/1905.11946v5.
[34] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-03)[2024-07-02]. https://arxiv.org/pdf/2010.11929.
[35] TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[EB/OL]. (2020-12-23) [2024-06-21]. https://arxiv.org/abs/2012.12877v2.
[36] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992-10002.
[37] WANG Ao, CHEN Hui, LIN Zijia, et al. Rep ViT: revisiting mobile CNN from ViT perspective[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 15909-15920.
[38] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International journal of computer vision, 2020, 128(2): 336-359.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems