[1]WANG Weiping,DIAO Yapeng.Optimized multi-exposure image fusion algorithm integrating pyramid and multi-scale attention[J].CAAI Transactions on Intelligent Systems,2025,20(4):916-927.[doi:10.11992/tis.202406032]
Copy

Optimized multi-exposure image fusion algorithm integrating pyramid and multi-scale attention

References:
[1] YI Xunpeng, TANG Linfeng, ZHANG Hao, et al. Diff-IF: Multi-modality image fusion via diffusion model with fusion knowledge prior[J]. Information fusion, 2024, 110: 102450.
[2] ZHANG Xingchen. Benchmarking and comparing multi-exposure image fusion algorithms[J]. Information fusion, 2021, 74: 111-131.
[3] LEI Dajiang, RAN Gangsheng, ZHANG Liping, et al. A spatiotemporal fusion method based on multiscale feature extraction and spatial channel attention mechanism[J]. Remote sensing, 2022, 14(3): 461.
[4] LIAN Zuozheng, WANG Haizhen. An image deblurring method using improved U-Net model based on multilayer fusion and attention mechanism[J]. Scientific reports, 2023, 13: 21402.
[5] HAN Dong, LI Liang, GUO Xiaojie, et al. Multi-exposure image fusion via deep perceptual enhancement[J]. Information fusion, 2022, 79: 248-262.
[6] WANG Zhao, LI Feng, CONG Runmin, et al. Adaptive feature fusion network based on boosted attention mechanism for single image dehazing[J]. Multimedia tools and applications, 2022, 81(8): 11325-11339.
[7] ZHANG Jianming, FENG Wenjun, YUAN Tingyu, et al. SCSTCF: spatial-channel selection and temporal regularized correlation filters for visual tracking[J]. Applied soft computing, 2022, 118: 108485.
[8] CAI Jianrui, GU Shuhang, ZHANG Lei. Learning a deep single image contrast enhancer from multi-exposure images[J]. IEEE transactions on image processing, 2018, 27(4): 2049-2062.
[9] LI Weiqiang, MU Jiatong, LIU Guizhong. Multiple object tracking with motion and appearance cues[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 161–169.
[10] NIU Wenjia, ZHANG Kaihao, LUO Wenhan, et al. Deep robust image deblurring via blur distilling and information comparison in latent space[J]. Neurocomputing, 2021, 466: 69-79.
[11] LI Hui, MA Kede, YONG Hongwei, et al. Fast multi-scale structural patch decomposition for multi-exposure image fusion[J]. IEEE transactions on image processing, 2020, 29: 5805-5816.
[12] SHAO Mingwen, LI Le, MENG Deyu, et al. Uncertainty guided multi-scale attention network for raindrop removal from a single image[J]. IEEE transactions on image processing, 2021, 30: 4828-4839.
[13] LEE K H, CHEN Xi, HUA Gang, et al. Stacked cross attention for image-text matching[C]//Proceedings of the European conference on computer vision. New York: Springer, 2018: 201-216.
[14] KRISHNAMOORTHI R, BAI A, SRINIVAS A. Medical image fusion based on transformation domain approaches[C]//IOP Conference Series: Materials Science and Engineering. [S. l.]: IOP Publishing, 2020, 981(4): 042082.
[15] DENG Xin, ZHANG Yutong, XU Mai, et al. Deep coupled feedback network for joint exposure fusion and image super-resolution[J]. IEEE transactions on image processing, 2021, 30: 3098-3112.
[16] ZHANG Weixia, MA Kede, ZHAI Guangtao, et al. Uncertainty-aware blind image quality assessment in the laboratory and wild[J]. IEEE transactions on image processing, 2021, 30: 3474-3486.
[17] CHEN Tianhai, YANG Xichen, LI Nengxin, et al. Underwater image quality assessment method based on color space multi-feature fusion[J]. Scientific reports, 2023, 13: 16838.
[18] PAN Zhaoqing, YUAN Feng, LEI Jianjun, et al. VCRNet: visual compensation restoration network for No-reference image quality assessment[J]. IEEE transactions on image processing, 2022, 31: 1613-1627.
[19] PATHAN R K, BISWAS M, YASMIN S, et al. Sign language recognition using the fusion of image and hand landmarks through multi-headed convolutional neural network[J]. Scientific reports, 2023, 13(1): 16975.
[20] HOFFMANN M, BILLOT B, GREVE D N, et al. SynthMorph: learning contrast-invariant registration without acquired images[J]. IEEE transactions on medical imaging, 2022, 41(3): 543-558.
[21] MAR C C, ZIN T T, TIN P, et al. Cow detection and tracking system utilizing multi-feature tracking algorithm[J]. Scientific reports, 2023, 13(1): 17423.
[22] TANG Linfeng, ZHANG Hao, XU Han, et al. Rethinking the necessity of image fusion in high-level vision tasks: a practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity[J]. Information fusion, 2023, 99: 101870.
[23] 刘万军, 佟畅, 曲海成. 空洞卷积与注意力融合的对抗式图像阴影去除算法[J]. 智能系统学报, 2021, 16(6): 1081-1089.
LIU Wanjun, TONG Chang, QU Haicheng. An antagonistic image shadow removal algorithm based on dilated convolution and attention mechanism[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1081-1089.
[24] ZHANG Hao, XU Han, TIAN Xin, et al. Image fusion meets deep learning: a survey and perspective[J]. Information fusion, 2021, 76: 323-336.
[25] QIU Sen, ZHAO Hongkai, JIANG Nan, et al. Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges[J]. Information fusion, 2022, 80: 241-265.
[26] 王建, 吴锡生. 基于改进的稀疏表示和PCNN的图像融合算法研究[J]. 智能系统学报, 2019, 14(5): 922-928.
WANG Jian, WU Xisheng. Image fusion based on the improved sparse representation and PCNN[J]. CAAI transactions on intelligent systems, 2019, 14(5): 922-928.
[27] 姜义, 吕荣镇, 刘明珠, 等. 基于生成对抗网络的人脸口罩图像合成[J]. 智能系统学报, 2021, 16(6): 1073-1080.
JIANG Yi, LYU Rongzhen, LIU Mingzhu, et al. Masked face image synthesis based on a generative adversarial network[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1073-1080.
[28] 张心祎, 谭耀, 邢向磊. 基于物理先验的深度特征融合水下图像复原[J]. 智能系统学报, 2023, 18(6): 1185-1196.
ZHANG Xinyi, TAN Yao, XING Xianglei. Deep feature fusion for underwater-image restoration based on physical priors[J]. CAAI transactions on intelligent systems, 2023, 18(6): 1185-1196.
[29] LI Hui, WU Xiaojun, KITTLER J. RFN-Nest: an end-to-end residual fusion network for infrared and visible images[J]. Information fusion, 2021, 73: 72-86.
[30] TANG Linfeng, YUAN Jiteng, MA Jiayi. Image fusion in the loop of high-level vision tasks: a semantic-aware real-time infrared and visible image fusion network[J]. Information fusion, 2022, 82: 28-42.
[31] QUAN Xiongwen, HOU Guangyao, YIN Wenya, et al. A multi-modal and multi-stage fusion enhancement network for segmentation based on OCT and OCTA images[J]. Information fusion, 2025, 113: 102594.
[32] HE Xiaoyu, WANG Yong, ZHAO Shuang, et al. Co-attention fusion network for multimodal skin cancer diagnosis[J]. Pattern recognition, 2023, 133: 108990.
[33] LIU Yun, ZHANG Xiaoming, ZHANG Qianyun, et al. Dual self-attention with co-attention networks for visual question answering[J]. Pattern recognition, 2021, 117: 107956.
[34] XIANG Fengtao, JIAN Zhang, LIANG Pan, et al. Robust image fusion with block sparse representation and online dictionary learning[J]. IET image processing, 2018, 12(3): 345-353.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems