[1]XU Weifeng,LEI Yao,WANG Hongtao,et al.Research on object detection models for edge devices[J].CAAI Transactions on Intelligent Systems,2025,20(4):871-881.[doi:10.11992/tis.202406015]
Copy

Research on object detection models for edge devices

References:
[1] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[2] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
[3] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.
[4] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 21-37.
[5] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999-3007.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
[7] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2024-06-11]. https://arxiv.org/abs/1804.02767v1.
[8] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2024-06-11]. https://arxiv.org/abs/2004.10934v1.
[9] DUAN Kaiwen, BAI Song, XIE Lingxi, et al. CenterNet: keypoint triplets for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6568-6577.
[10] TIAN Zhi, CHU Xiangxiang, WANG Xiaoming, et al. Fully convolutional one-stage 3d object detection on lidar range images[J]. Advances in neural information processing systems, 2022, 35: 34899-34911.
[11] GE Zheng, LIU Songtao, WANG Feng, et al. Yolox: exceeding yolo series in 2021[EB/OL]. (2021-07-18)[2024-06-11]. https://arxiv.org/abs/2107.08430.
[12] JOCHER G, CHAURASIA A, QIU J. Ultralytics YOLO (Version 8.0. 0). (2023-01-15)[2024-06-11]. http://github.com/ultralytics/ultralytics.
[13] HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17)[2024-06-11]. https://arxiv.org/abs/1704.04861v1.
[14] ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848-6856.
[15] HAN Kai, WANG Yunhe, TIAN Qi, et al. GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1577-1586.
[16] JOCHER G. YOLOv5 by Ultralytics (Version 7.0). [2024-06-11]. https://doi.org/10.5281/zenodo.3908559.
[17] LI Chuyi, LI Lulu, GENG Yifei, et al. YOLOv6 v3.0: a full-scale reloading[EB/OL]. (2023-01-13)[2024-06-11]. https://arxiv.org/abs/2301.05586v1.
[18] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 7464-7475.
[19] 李源鑫, 郭忠峰, 杨钧麟. 基于轻量化YOLOv5s的集装箱锁孔识别算法[J]. 计算机科学, 2024, 51(S1): 524-529.
LI Yuanxin, GUO Zhongfeng, YANG Junlin. Container keyhole identification algorithm based on lightweight YOLOv5s[J]. Computer science, 2024, 51(S1): 524-529.
[20] 曲英伟, 刘锐. 基于YOLOv5-MobileNetV3算法的目标检测[J]. 计算机系统应用, 2024, 33(7): 213-221.
QU Yingwei, LIU Rui. Object detection based on YOLOv5-MobileNetV3 algorithm[J]. Computer systems and applications, 2024, 33(7): 213-221.
[21] 何宇豪, 易明发, 周先存, 等. 基于改进的Yolov5的无人机图像小目标检测[J]. 智能系统学报, 2024, 19(3): 635-645.
HE Yuhao, YI Mingfa, ZHOU Xiancun, et al. UAV image small-target detection based on improved Yolov5[J]. CAAI transactions on intelligent systems, 2024, 19(3): 635-645.
[22] TAN Mingxing, PANG Ruoming, LE Q V. EfficientDet: scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10778-10787.
[23] 胡丹丹, 张忠婷. 基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法[J]. 智能系统学报, 2024, 19(3): 653-660.
HU Dandan, ZHANG Zhongting. Road target detection algorithm for autonomous driving scenarios based on improved YOLOv5s[J]. CAAI transactions on intelligent systems, 2024, 19(3): 653-660.
[24] GUPTA C, GILL N S, GULIA P, et al. A novel finetuned YOLOv6 transfer learning model for real-time object detection[J]. Journal of real-time image processing, 2023, 20(3): 42.
[25] CHEN Junyang, LIU Hui, ZHANG Yating, et al. A multiscale lightweight and efficient model based on YOLOv7: applied to citrus orchard[J]. Plants, 2022, 11(23): 3260.
[26] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 3-19.
[27] 邹珺淏, 任酉贵, 冷芳玲, 等. LW-YOLOv7SAR: 轻量SAR图像目标检测方法[J/OL]. 小型微型计算机系统, 1-9. [2024-06-15]. https://www.cnki.com.cn/Article/CJFDTotal-XXWX20231103009.htm.
ZOU Junhao, REN Yougui, LENG Fangling, et al. LW-YOLOv7SAR: Lightweight SAR image object detection method [J/OL]. Journal of Small Computer Systems, 1-9. [2024-06-15]. https://www.cnki.com.cn/Article/CJFDTotal-XXWX20231103009.htm.
[28] 高德勇, 陈泰达, 缪兰. 改进YOLOv8n的道路目标检测算法[J]. 计算机工程与应用, 2024, 60(16): 186-197.
GAO Deyong, CHEN Taida, MIAO Lan. Improved road object detection algorithm for YOLOv8n[J]. Computer engineering and applications, 2024, 60(16): 186-197.
[29] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
[30] YANG Guoyu, LEI Jie, ZHU Zhikuan, et al. AFPN: asymptotic feature pyramid network for object detection[C]//2023 IEEE International Conference on Systems, Man, and Cybernetics. Honolulu: IEEE, 2023: 2184-2189.
[31] CHEN Jierun, KAO S H, HE Hao, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 12021-12031.
[32] DING Xiaohan, ZHANG Xiangyu, MA Ningning, et al. RepVGG: making VGG-style ConvNets great again[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13728-13737.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems