[1]WANG Dewen,AN Han,ZHANG Linfei,et al.Multi-task load forecasting of integrated energy based on progressive layered feature extraction[J].CAAI Transactions on Intelligent Systems,2025,20(4):858-870.[doi:10.11992/tis.202406008]
Copy

Multi-task load forecasting of integrated energy based on progressive layered feature extraction

References:
[1] 田德, 陈忠雷, 邓英. 考虑预测误差的综合能源系统优化调度模型[J]. 太阳能学报, 2019, 40(7): 1890-1896.
TIAN De, CHEN Zhonglei, DENG Ying. Integrated energy system optimal dispatching model considering prediction errors[J]. Acta energiae solaris sinica, 2019, 40(7): 1890-1896.
[2] 刁涵彬, 李培强, 吕小秀, 等. 考虑多元储能差异性的区域综合能源系统储能协同优化配置[J]. 电工技术学报, 2021, 36(1): 151-165.
DIAO Hanbin, LI Peiqiang, LYU Xiaoxiu, et al. Coordinated optimal allocation of energy storage in regional integrated energy system considering the diversity of multi-energy storage[J]. Transactions of China electrotechnical society, 2021, 36(1): 151-165.
[3] 陈明昊, 孙毅, 谢志远. 基于双层深度强化学习的园区综合能源系统多时间尺度优化管理[J]. 电工技术学报, 2023, 38(7): 1864-1881.
CHEN Minghao, SUN Yi, XIE Zhiyuan. The multi-time-scale management optimization method for park integrated energy system based on the bilayer deep reinforcement learning[J]. Transactions of China electrotechnical society, 2023, 38(7): 1864-1881.
[4] 吕佳炜, 张沈习, 程浩忠, 等. 考虑互联互动的区域综合能源系统规划研究综述[J]. 中国电机工程学报, 2021, 41(12): 4001-4021.
LYU Jiawei, ZHANG Shenxi, CHENG Haozhong, et al. Review on district-level integrated energy system planning considering interconnection and interaction[J]. Proceedings of the CSEE, 2021, 41(12): 4001-4021.
[5] 朱继忠, 董瀚江, 李盛林, 等. 数据驱动的综合能源系统负荷预测综述[J]. 中国电机工程学报, 2021, 41(23): 7905-7924.
ZHU Jizhong, DONG Hanjiang, LI Shenglin, et al. Review of data-driven load forecasting for integrated energy system[J]. Proceedings of the CSEE, 2021, 41(23): 7905-7924.
[6] ZHOU Mo, JIN Min. Holographic ensemble forecasting method for short-term power load[J]. IEEE transactions on smart grid, 2019, 10(1): 425-434.
[7] KONG Weicong, DONG Zhaoyang, JIA Youwei, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE transactions on smart grid, 2019, 10(1): 841-851.
[8] 叶剑华, 曹旌, 杨理, 等. 基于变分模态分解和多模型融合的用户级综合能源系统超短期负荷预测[J]. 电网技术, 2022, 46(7): 2610-2622.
YE Jianhua, CAO Jing, YANG Li, et al. Ultra short-term load forecasting of user level integrated energy system based on variational mode decomposition and multi-model fusion[J]. Power system technology, 2022, 46(7): 2610-2622.
[9] 陈锦鹏, 胡志坚, 陈纬楠, 等. 二次模态分解组合DBiLSTM-MLR的综合能源系统负荷预测[J]. 电力系统自动化, 2021, 45(13): 85-94.
CHEN Jinpeng, HU Zhijian, CHEN Weinan, et al. Load prediction of integrated energy system based on combination of quadratic modal decomposition and deep bidirectional long short-term memory and multiple linear regression[J]. Automation of electric power systems, 2021, 45(13): 85-94.
[10] 吴伟杰, 吴杰康, 雷振, 等. 基于CSO优化深度信念网络的园区能源需求预测方法[J]. 电网技术, 2021, 45(10): 3859-3868.
WU Weijie, WU Jiekang, LEI Zhen, et al. Park energy demand forecasting based on CSO optimized deep belief network[J]. Power system technology, 2021, 45(10): 3859-3868.
[11] 栗然, 孙帆, 丁星, 等. 考虑多能时空耦合的用户级综合能源系统超短期负荷预测方法[J]. 电网技术, 2020, 44(11): 4121-4134.
LI Ran, SUN Fan, DING Xing, et al. Ultra short-term load forecasting for user-level integrated energy system considering multi-energy spatio-temporal coupling[J]. Power system technology, 2020, 44(11): 4121-4134.
[12] LEE S, SON Y. Multitask learning with single gradient step update for task balancing[J]. Neurocomputing, 2022, 467: 442-453.
[13] 欧阳静, 杨吕, 尹康, 等. 基于ALIF-LSTM多任务学习的综合能源系统短期负荷预测[J]. 太阳能学报, 2022, 43(9): 499-507.
OUYANG Jing, YANG Lyu, YIN Kang, et al. Short-term load forecasting method for integrated energy system based on ALIF-LSTM and multi-task learning[J]. Acta energiae solaris sinica, 2022, 43(9): 499-507.
[14] WANG Chen, WANG Ying, DING Zhetong, et al. A Transformer-based method of multi-energy load forecasting in integrated energy system[J]. IEEE transactions on smart grid, 2022, 13(4): 2703-2714.
[15] 鲁斌, 霍泽健, 俞敏. 基于LSTNet-Skip的综合能源系统多元负荷超短期预测[J]. 中国电机工程学报, 2023, 43(6): 2273-2283.
LU Bin, HUO Zejian, YU Min. Multi load ultra short-term forecasting of integrated energy system based on LSTNet-Skip[J]. Proceedings of CSEE, 2023, 43(6): 2273-2283.
[16] NIU Dongxiao, YU Min, SUN Lijie, et al. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism[J]. Applied energy, 2022, 313: 118801.
[17] TAN Zhongfu, DE G, LI Menglu, et al. Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine[J]. Journal of cleaner production, 2020, 248: 119252.
[18] LI Ke, MU Yuchen, YANG Fan, et al. A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN[J]. Applied energy, 2023, 351: 121823.
[19] LI Keyao, XU Jungang. AC-MMOE: a multi-gate mixture-of-experts model based on attention and convolution[J]. Procedia computer science, 2023, 222: 187-196.
[20] GUO Yixiu, LI Yong, QIAO Xuebo, et al. BiLSTM multitask learning-based combined load forecasting considering the loads coupling relationship for multienergy system[J]. IEEE transactions on smart grid, 2022, 13(5): 3481-3492.
[21] 梁李芳, 关东海, 张吉, 等. 基于时空注意力机制的多元时间序列异常检测[J]. 计算机科学, 2023, 50(S2): 450-457.
LIANG Lifang, GUAN Donghai, ZHANG Ji, et al. Anomaly detection of multivariate time series based on spatio-temporal attention mechanism[J]. Computer science, 2023, 50(S2): 450-457.
[22] 马志侠, 张林鍹, 邱朝洁, 等. 基于CEEMD-SSA-LSTM 的园区综合能源系统两阶段优化调度[J]. 高电压技术, 2023, 49(4): 1430-1440.
MA Zhixia, ZHANG Linxuan, QIU Chaojie, et al. Two-stage optimal scheduling of the park integrated energy system based on CEEMDSSA-LSTM[J]. High voltage engineering, 2023, 49(4): 1430-1440.
[23] TANG Hongyan, LIU Junning, ZHAO Ming, et al. Progressive layered extraction (PLE): a novel multi-task learning (MTL) model for personalized recommendations[C]//Fourteenth ACM Conference on Recommender Systems. Virtual Event: ACM, 2020.
[24] NSRDB data viewer[DB/OL]. (2021-10-25) [2025-04-01]. https://nrel.govldata-viewerl.
[25] WANG Weina, SHAO Jiapeng, JUMAHONG H. Fuzzy inference-based LSTM for long-term time series prediction[J]. Scientific reports, 2023, 13(1): 20359.
[26] 李伯涵, 郭茂祖, 赵玲玲, 等. 基于分割注意力机制残差网络的城市区域客流量预测[J]. 智能系统学报, 2022, 17(4): 839-848.
LI Bohan, GUO Maozu, ZHAO Linlin, et al. Multivariate time series forecasting with a graph neural network and dual attention mechanism[J]. CAAI transactions on intelligent systems, 2022, 17(4): 839-848.
[27] 雷博. 综合能源系统多元负荷预测的混合深度学习模型研究[D]. 太原: 太原科技大学, 2024.
Lei Bo. Research on hybrid deep learning model for multivariate load forecasting in integrated energy system[D]. Taiyuan: Taiyuan University of Science and Technology, 2024.
[28] 张玉敏, 孙猛, 吉兴全, 等. 基于模态分解与多任务学习模型的综合能源系统多元负荷短期预测 [J/OL]. 高电压技术. (2024-08-27)[2024-09-01]. https://doi.org/10.13336/j.1003-6520.hve.20240685.
ZHANG Yumin, SUN Meng, JI Xingquan, et al. Short-term load forecasting of integrated energy system based on modal decomposition and multi-task learning model[J/OL]. High voltage engineering. (2024-08-27)[2024-09-01]. https://doi.org/10.13336/j.1003-6520.hve.20240685.
[29] LI Zhenyu, ZHANG Xikun, DONG Zhenbiao. TSF-transformer: a time series forecasting model for exhaust gas emission using transformer[J]. Applied intelligence, 2023, 53(13): 17211-17225.
[30] 郭顺宁, 马雪, 杨帆, 等. 基于最优Copula相关性分析的短期风速预测方法[J]. 电网与清洁能源, 2024, 40(2): 63-72.
GUO Shunning, MA Xue, YANG Fan, et al. A short-term wind speed prediction method based on optimal copula correlation analysis[J]. Power system and clean energy, 2024, 40(2): 63-72.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems