[1]XING Wenlai,WU Runxiu,XIAO Renbin,et al.A multi-objective firefly algorithm with group optimization of decision variables[J].CAAI Transactions on Intelligent Systems,2025,20(4):838-857.[doi:10.11992/tis.202406005]
Copy

A multi-objective firefly algorithm with group optimization of decision variables

References:
[1] FARAG M A, EL-SHORBAGY M A, MOUSA A A, et al. A new hybrid metaheuristic algorithm for multiobjective optimization problems[J]. International journal of computational intelligence systems, 2020, 13(1): 920-940.
[2] BAROCIO E, REGALADO J, CUEVAS E, et al. Modified bio-inspired optimisation algorithm with a centroid decision making approach for solving a multi-objective optimal power flow problem[J]. IET generation, transmission & distribution, 2017, 11(4): 1012-1022.
[3] 李昌响, 赵嘉, 韩龙哲, 等. 多通道CNN-BiLSTM的短时温度预测[J]. 江西师范大学学报(自然科学版), 2023, 47(3): 325-330.
LI Changxiang, ZHAO Jia, HAN Longzhe, et al. The short-time temperature prediction for multi-channel CNN-BiLSTM[J]. Journal of Jiangxi Normal University (natural science edition), 2023, 47(3): 325-330.
[4] 李松, 吴润秀, 康平, 等. 基于自适应剪辑与概率参数的Tri-Training算法[J]. 江西师范大学学报(自然科学版), 2023, 47(5): 490-496.
LI Song, WU Runxiu, KANG Ping, et al. The ADP-Tri-Training: Tri-Training with adaptive editing and probability parameters[J]. Journal of Jiangxi Normal University (natural science edition), 2023, 47(5): 490-496.
[5] LIAGKOURAS K, METAXIOTIS K. Enhancing the performance of MOEAs: an experimental presentation of a new fitness guided mutation operator[J]. Journal of experimental & theoretical artificial intelligence, 2017, 29(1): 91-131.
[6] XIAO Renbin. Four development stages of collective intelligence[J]. Frontiers of information technology & electronic engineering, 2024, 25(7): 903-916.
[7] MIRJALILI S, SAREMI S, MIRJALILI S M, et al. Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization[J]. Expert systems with applications, 2016, 47: 106-119.
[8] AKBARI R, HEDAYATZADEH R, ZIARATI K, et al. A multi-objective artificial bee colony algorithm[J]. Swarm and evolutionary computation, 2012, 2: 39-52.
[9] YANG Xinse. Nature-inspired metaheuristic algorithms[M]. Frome: Luniver press, 2008.
[10] YANG Xinshe. Multiobjective firefly algorithm for continuous optimization[J]. Engineering with computers, 2013, 29(2): 175-184.
[11] 谢承旺, 肖驰, 丁立新, 等. HMOFA: 一种混合型多目标萤火虫算法[J]. 软件学报, 2018, 29(4): 1143-1162.
XIE Chengwang, XIAO Chi, DING Lixin, et al. HMOFA: a hybrid multi-objective firefly algorithm[J]. Journal of software, 2018, 29(4): 1143-1162.
[12] ZHAO Jia, CHEN Dandan, XIAO Renbin, et al. Multi-strategy ensemble firefly algorithm with equilibrium of convergence and diversity[J]. Applied soft computing, 2022, 123: 108938.
[13] 赵嘉, 胡秋敏, 肖人彬, 等. 求解大规模稀疏优化问题的高维多目标萤火虫算法[J]. 控制与决策., 2024, 39(12): 3989-3996.
ZHAO Jia, HU Qiumin, XIAO Renbin, et al. Many-objective firefly algorithm for solving large-scale sparse optimization problems[J]. Control and decision., 2024, 39(12): 3989-3996.
[14] LYU Li, ZHAO Jia, WANG Jiayuan, et al. Multi-objective firefly algorithm based on compensation factor and elite learning[J]. Future generation computer systems, 2019, 91: 37-47.
[15] 赵嘉, 陈丹丹, 肖人彬, 等. 一种基于最大最小策略和非均匀变异的萤火虫算法[J]. 智能系统学报, 2022, 17(1): 116-130.
ZHAO Jia, CHEN Dandan, XIAO Renbin, et al. A heterogeneous variation firefly algorithm with maximin strategy[J]. CAAI transactions on intelligent systems, 2022, 17(1): 116-130.
[16] 陈娟, 赵嘉, 肖人彬, 等. 基于动态反向学习和莱维飞行的双搜索模式萤火虫算法[J]. 信息与控制, 2023, 52(5): 607-615.
CHEN Juan, ZHAO Jiao, XIAO Renbin, et al. Double search mode firefly algorithm based on dynamic reverse learning and levy flight[J]. Information and control, 2023, 52(5): 607-615.
[17] ZHAO Jia, CHEN Dandan, XIAO Renbin, et al. Multi-objective firefly algorithm with adaptive region division[J]. Applied soft computing, 2023, 147: 110796.
[18] WANG Hui, WANG Wenjun, CUI Laizhong, et al. A hybrid multi-objective firefly algorithm for big data optimization[J]. Applied soft computing, 2018, 69: 806-815.
[19] ZHAO Jia, LV Siyu, XIAO Renbin, et al. Hierarchical learning multi-objective firefly algorithm for high-dimensional feature selection[J]. Applied soft computing, 2024, 165: 112042.
[20] MA Xiaoliang, LIU Fang, QI Yutao, et al. A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables[J]. IEEE transactions on evolutionary computation, 2016, 20(2): 275-298.
[21] ZHAO Xinchao, GAO Xiaoshan, HU Zechun. Evolutionary programming based on non-uniform mutation[J]. Applied mathematics and computation, 2007, 192(1): 1-11.
[22] ZITZLER E, LAUMANNS M. THIELE L. SPEA2: improving the strength pareto evolutionary algorithm for multi-objective optimization [C]//Proceedings of the Evolutionary Methods for Design, Optimization and Control. Barcelona: IEEE, 2002: 19-26.
[23] 赵嘉, 谢智峰, 吕莉, 等. 深度学习萤火虫算法[J]. 电子学报, 2018, 46(11): 2633-2641.
ZHAO Jia, XIE Zhifeng, LV Li, et al. Firefly algorithm with deep learning[J]. Acta electronica sinica, 2018, 46(11): 2633-2641.
[24] ZHAO Jia, CHEN Wenping, XIAO Renbin, et al. Firefly algorithm with division of roles for complex optimal scheduling[J]. Frontiers of information technology & electronic engineering, 2021, 22(10): 1311-1333.
[25] TIAN Ye, CHENG Ran, ZHANG Xingyi, et al. PlatEMO: a MATLAB platform for evolutionary multi-objective optimization educational forum[J]. IEEE computational intelligence magazine, 2017, 12(4): 73-87.
[26] RAQUEL C R, NAVAL P C. An effective use of crowding distance in multiobjective particle swarm optimization[C]//Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation. Washington: ACM, 2005: 257-264.
[27] ZHANG Qingfu, LI Hui. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE transactions on evolutionary computation, 2007, 11(6): 712-731.
[28] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182-197.
[29] CORNE D W, JERRAM N R, KNOWLES J D, et al. PESA-II: region-based selection in evolutionary multiobjective optimization[C]//Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation. [S. l. : s. n. ], 2001: 283-290.
[30] ZHANG Xingyi, ZHENG Xiutao, CHENG Ran, et al. A competitive mechanism based multi-objective particle swarm optimizer with fast convergence[J]. Information sciences, 2018, 427: 63-76.
[31] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE transactions on evolutionary computation, 2014, 18(4): 577-601.
[32] ELARBI M, BECHIKH S, GUPTA A, et al. A new decomposition-based NSGA-II for many-objective optimization[J]. IEEE transactions on systems, man, and cybernetics: systems, 2018, 48(7): 1191-1210.
[33] TIAN Ye, HE Cheng, CHENG Ran, et al. A multistage evolutionary algorithm for better diversity preservation in multiobjective optimization[J]. IEEE transactions on systems, man, and cybernetics: systems, 2021, 51(9): 5880-5894.
[34] LI Lianghao, HE Cheng, CHENG Ran, et al. A fast sampling based evolutionary algorithm for million-dimensional multiobjective optimization[J]. Swarm and evolutionary computation, 2022, 75: 101181.
[35] BACK T, PREUSS M, DEUTZ A, et al. Parallel problem solving from nature-PPSN XVI[M]. Cham: Springer International Publishing, 2020: 271-284.
[36] TIAN Ye, LU Chang, ZHANG Xingyi, et al. Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks[J]. IEEE transactions on cybernetics, 2021, 51(6): 3115-3128.
[37] HUA Yicun, JIN Yaochu, HAO Kuangrong. A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular Pareto fronts[J]. IEEE transactions on cybernetics, 2019, 49(7): 2758-2770.
[38] RAY T, LIEW K M. A swarm metaphor for multiobjective design optimization[J]. Engineering optimization, 2002, 34(2): 141-153.
[39] TANABE R, ISHIBUCHI H. An easy-to-use real-world multi-objective optimization problem suite[J]. Applied soft computing, 2020, 89: 106078.
[40] DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer methods in applied mechanics and engineering, 2000, 186(2/3/4): 311-338.
[41] PANICHELLA A. An improved Pareto front modeling algorithm for large-scale many-objective optimization[C]//Proceedings of the Genetic and Evolutionary Computation Conference. Boston : ACM, 2022: 565-573.
[42] MING Fei, GONG Wenyin, LI Dongcheng, et al. A competitive and cooperative swarm optimizer for constrained multiobjective optimization problems[J]. IEEE transactions on evolutionary computation, 2023, 27(5): 1313-1326.
[43] JIAO Ruwang, ZENG Sanyou, LI Changhe, et al. Handling constrained many-objective optimization problems via problem transformation[J]. IEEE transactions on cybernetics, 2021, 51(10): 4834-4847.
[44] QIAO Kangjia, YU Kunjie, QU Boyang, et al. An evolutionary multitasking optimization framework for constrained multiobjective optimization problems[J]. IEEE transactions on evolutionary computation, 2022, 26(2): 263-277.
[45] ZOU Juan, SUN Ruiqing, LIU Yuan, et al. A multipopulation evolutionary algorithm using new cooperative mechanism for solving multiobjective problems with multiconstraint[J]. IEEE transactions on evolutionary computation, 2024, 28(1): 267-280.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems