[1]PAN Yuyan,ZHANG De,LI Zhuangju.Nonconvex TRPCA algorithm combined with low-rank pre-separation and random jitter mechanism[J].CAAI Transactions on Intelligent Systems,2025,20(4):822-837.[doi:10.11992/tis.202406003]
Copy

Nonconvex TRPCA algorithm combined with low-rank pre-separation and random jitter mechanism

References:
[1] 倪怀发, 沈肖波, 孙权森. 基于低秩分解的鲁棒典型相关分析[J]. 智能系统学报, 2017, 12(4): 491-497.
NI Huaifa, SHEN Xiaobo, SUN Quansen. Robust canonical correlation analysis based on low rank decomposition[J]. CAAI transactions on intelligent systems, 2017, 12(4): 491-497.
[2] CANDèS E J, LI Xiaodong, MA Yi, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 1-37.
[3] CAI Jianfeng, CANDèS E J, SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM journal on optimization, 2010, 20(4): 1956-1982.
[4] ASANTE-MENSAH M G, PHAN A H, AHMADI-ASL S, et al. Image reconstruction using superpixel clustering and tensor completion[J]. Signal processing, 2023, 212: 109158.
[5] ZHENG Jianwei, YANG Ping, YANG Xi, et al. Truncated low-rank and total p variation constrained color image completion and its Moreau approximation algorithm[J]. IEEE transactions on image processing, 2020, 29: 7861-7874.
[6] OH T H, TAI Y W, BAZIN J C, et al. Partial sum minimization of singular values in robust PCA: algorithm and applications[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(4): 744-758.
[7] ZHU Lin, JIANG Xiurong, LI Jianing, et al. Motion-aware structured matrix factorization for foreground detection in complex scenes[J]. ACM transactions on multimedia computing, communications, and applications, 2020, 16(4): 1-23.
[8] ZHONG Guo, PUN C M. RPCA-induced self-representation for subspace clustering[J]. Neurocomputing, 2021, 437: 249-260.
[9] 王丽娟, 丁世飞, 夏菁. 基于多样性的多视图低秩稀疏子空间聚类算法[J]. 智能系统学报, 2022, 18(2): 399-408.
WANG Lijuan, DING Shifei, XIA Jing. Multiview low-rank sparse subspace clustering based on diversity[J]. CAAI transactions on intelligent systems, 2022, 18(2): 399-408.
[10] 吴小艺, 吴小俊. 结构化加权稀疏低秩恢复算法在人脸识别中的应用[J]. 智能系统学报, 2019, 14(3): 455-463.
WU Xiaoyi, WU Xiaojun. A low rank recovery algorithm for face recognition with structured and weighted sparse constraint[J]. CAAI transactions on intelligent systems, 2019, 14(3): 455-463.
[11] KOLDA T G, BADER B W. Tensor decompositions and applications[J]. SIAM review, 2009, 51(3): 455-500.
[12] KILMER M E, BRAMAN K, HAO Ning, et al. Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging[J]. SIAM journal on matrix analysis and applications, 2013, 34(1): 148-172.
[13] LIU Ji, MUSIALSKI P, WONKA P, et al. Tensor completion for estimating missing values in visual data[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(1): 208-220.
[14] HUANG Bo, MU Cun, GOLDFARB Donald, et al. Provable models for robust low-rank tensor completion[J]. Pacific journal of optimization, 2015, 11(2): 339-64.
[15] LU Canyi, FENG Jiashi, CHEN Yudong, et al. Tensor robust principal component analysis with a new tensor nuclear norm[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(4): 925-938.
[16] KILMER M E, MARTIN C D. Factorization strategies for third-order tensors[J]. Linear algebra and its applications, 2011, 435(3): 641-658.
[17] ZHANG Zemin, ELY G, AERON S, et al. Novel methods for multilinear data completion and de-noising based on tensor-SVD[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 3842-3849.
[18] LU Canyi, FENG Jiashi, CHEN Yudong, et al. Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 5249-5257.
[19] BOYD S. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and trends? in machine learning, 2010, 3(1): 1-122.
[20] CANDèS E J, WAKIN M B, BOYD S P. Enhancing sparsity by reweighted ?1 minimization[J]. Journal of fourier analysis and applications, 2008, 14(5): 877-905.
[21] GENG Xiaoyu, GUO Qiang, HUI Shuaixiong, et al. Tensor robust PCA with nonconvex and nonlocal regularization[J]. Computer vision and image understanding, 2024, 243: 104007.
[22] ZHANG Feng, WANG Hailin, QIN Wenjin, et al. Generalized nonconvex regularization for tensor RPCA and its applications in visual inpainting[J]. Applied intelligence, 2023, 53(20): 23124-23146.
[23] YANG Ming, LUO Qilun, LI Wen, et al. Nonconvex 3D array image data recovery and pattern recognition under tensor framework[J]. Pattern recognition, 2022, 122: 108311.
[24] WANG Hailin, ZHANG Feng, WANG Jianjun, et al. Generalized nonconvex approach for low-tubal-rank tensor recovery[J]. IEEE transactions on neural networks and learning systems, 2022, 33(8): 3305-3319.
[25] 苏雅茹, 刘耿耿, 刘文犀, 等. 基于lP范数的非凸低秩张量最小化[J]. 模式识别与人工智能, 2019, 32(6): 494-503.
SU Yaru, LIU Genggeng, LIU Wenxi, et al. Nonconvex low-rank tensor minimization based on lP norm[J]. Pattern recognition and artificial intelligence, 2019, 32(6): 494-503.
[26] GENG Xiaoyu, GUO Qiang, ZHANG Caiming. Color image denoising via tensor robust PCA with nonconvex and nonlocal regularization[C]//ACM multimedia Asia. Gold Coast: ACM, 2021: 1-5.
[27] WEN Fei, YING Rendong, LIU Peilin, et al. Robust PCA using generalized nonconvex regularization[J]. IEEE transactions on circuits and systems for video technology, 2020, 30(6): 1497-1510.
[28] GAO Quanxue, ZHANG Pu, XIA Wei, et al. Enhanced tensor RPCA and its application[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(6): 2133-2140.
[29] YANG Jinghua, ZHAO Xile, MA Tianhui, et al. Tensor train rank minimization with hybrid smoothness regularization for visual data recovery[J]. Applied mathematical modelling, 2020, 81: 711-726.
[30] 杨枥皓. 基于截断核范数张量鲁棒主成分分析[J]. 人工智能与机器人研究, 2020, 9: 64.
YANG Lihao. Tensor Robust Principal Component Analysis Based on Truncated Nuclear Norm[J]. Artificial intelligence and robotics research, 2020, 9: 64.
[31] 陈利霞, 班颖, 王学文. 基于张量核范数与3D全变分的背景减除[J]. 计算机应用, 2020, 40(9): 2737-2742.
CHEN Lixia, BAN Ying, WANG Xuewen. Background subtraction based on tensor nuclear norm and 3D total variation[J]. Journal of computer applications, 2020, 40(9): 2737-2742.
[32] TIBSHIRANI R. Regression shrinkage and selection via the lasso: a retrospective[J]. Journal of the royal statistical society series B: statistical methodology, 2011, 73(3): 273-282.
[33] ZUO Wangmeng, MENG Deyu, ZHANG Lei, et al. A generalized iterated shrinkage algorithm for non-convex sparse coding[C]//2013 IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 217-224.
[34] MIRSKY L. A trace inequality of john von Neumann[J]. Monatshefte für mathematik, 1975, 79(4): 303-306.
[35] 李坤来, 王雲龙, 秦琴, 等. MATLAB中多种图像去噪算法的比较分析[J]. 信息技术与信息化, 2023(8): 62-67.
LI Kunlai, WANG Yunlong, QIN Qin, et al. Comparative analysis of various image denoising algorithms in MATLAB[J]. Information technology and informatization, 2023(8): 62-67.
[36] 史凯特, 孙浩东, 董秀芬, 等. 基于改进加权核范数最小化的图像去噪算法研究[J]. 电光与控制, 2024: 48-52.
SHI Kaite, SUN Haodong, DONG Xiufen, et al. Research on image denoising algorithm based on improved weighted kernel norm minimization[J]. China industrial economics, 2024: 48-52.
[37] MORDVINTSEV Alexander, OLAH Christopher, TYKA Mike. Inceptionism: going deeper into neural networks[J]. Google research blog, 2015, 20(14): 5-15.
[38] MAHENDRAN A, VEDALDI A. Visualizing deep convolutional neural networks using natural pre-images[J]. International journal of computer vision, 2016, 120(3): 233-255.
[39] XIE Qi, ZHAO Qian, MENG Deyu, et al. Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(8): 1888-1902.
[40] LIU Youfa, DU Bo, CHEN Yongyong, et al. Convex–concave tensor robust principal component analysis[J]. International journal of computer vision, 2024, 132(5): 1721-1747.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems