[1]ZHAO Huihui,JI Zhijian.Symbolic network controllability based on a consistency protocol under distance division[J].CAAI Transactions on Intelligent Systems,2025,20(5):1178-1187.[doi:10.11992/tis.202405038]
Copy

Symbolic network controllability based on a consistency protocol under distance division

References:
[1] GUO Junhao, JI Zhijian, LIU Yungang, et al. Unified understanding and new results of controllability model of multi-agent systems[J]. International journal of robust and nonlinear control, 2022, 32(11): 6330-6345.
[2] LIU Bo, AN Qing, GAO Yanping, et al. Leader–follower controllability of signed networks[J]. ISA transactions, 2022, 128: 115-122.
[3] LOU Yanhong, JI Zhijian, QU Jijun. New results of multi-agent controllability under equitable partitions[J]. IEEE access, 2020, 8: 73523-73535.
[4] 关永强, 纪志坚, 张霖, 等. 多智能体系统能控性研究进展[J]. 控制理论与应用, 2015, 32(4): 421-431.
GUAN Yongqiang, JI Zhijian, ZHANG Lin, et al. Recent developments on controllability of multi-agent systems[J]. Control theory & applications, 2015, 32(4): 421-431.
[5] 王龙, 杜金铭. 多智能体协调控制的演化博弈方法[J]. 系统科学与数学, 2016, 36(3): 302-318.
WANG Long, DU Jinming. Evolutionary game theoretic approach to coordinated control of multi-agent systems[J]. Journal of systems science and mathematical sciences, 2016, 36(3): 302-318.
[6] 赵兰浩, 纪志坚. 符号网络条件下扩散耦合多智能体系统的可控性分析[J]. 系统科学与数学, 2021, 41(6): 1455-1466.
ZHAO Lanhao, JI Zhijian. Controllability analysis of diffusion coupled multi-agent system under signed networks[J]. Journal of systems science and mathematical sciences, 2021, 41(6): 1455-1466.
[7] 陈万金, 纪志坚. 基于拓扑结构和个体动态层面的多智能体系统可控性分析[J]. 智能系统学报, 2020, 15(2): 264-270.
CHEN Wanjin, JI Zhijian. Controllability analysis of multi-agent systems based on topological structure and individual dynamic level[J]. CAAI transactions on intelligent systems, 2020, 15(2): 264-270.
[8] JI Zhijian, YU Haisheng. A new perspective to graphical characterization of multiagent controllability[J]. IEEE transactions on cybernetics, 2017, 47(6): 1471-1483.
[9] TANNER H G. On the controllability of nearest neighbor interconnections[C]//2004 43rd IEEE Conference on Decision and Control. Nassau: IEEE, 2004: 2467-2472.
[10] SUN Chao, HU Guoqiang, XIE Lihua. Controllability of multiagent networks with antagonistic interactions[J]. IEEE transactions on automatic control, 2017, 62(10): 5457-5462.
[11] AGUILAR C O, GHARESIFARD B. Graph controllability classes for the Laplacian leader-follower dynamics[J]. IEEE transactions on automatic control, 2015, 60(6): 1611-1623.
[12] YAZ?C?O?LU A Y, ABBAS W, EGERSTEDT M. Graph distances and controllability of networks[J]. IEEE transactions on automatic control, 2016, 61(12): 4125-4130.
[13] 纪志坚. 等价划分下多智能体系统能控性的一种判定方法[J]. 聊城大学学报(自然科学版), 2023, 36(6): 1-8.
JI Zhijian. A method for determining the controllability of multi-agent systems under equitable partition[J]. Journal of Liaocheng University (natural science edition), 2023, 36(6): 1-8.
[14] SU Mengmeng, JI Zhijian, LIU Yungang, et al. Improved multi-agent controllability processing technique based on equitable partition[J]. ISA transactions, 2023, 138: 301-310.
[15] ZHANG Xiufeng, SUN Jian. Almost equitable partitions and controllability of leader-follower multi-agent systems[J]. Automatica, 2021, 131: 109740.
[16] AGUILAR C O, GHARESIFARD B. Almost equitable partitions and new necessary conditions for network controllability[J]. Automatica, 2017, 80: 25-31.
[17] GAO Hua, JI Zhijian, HOU Ting. Equitable partitions in the controllability of undirected signed graphs[C]//2018 IEEE 14th International Conference on Control and Automation. Anchorage: IEEE, 2018: 532-537.
[18] HEIDER F. Attitudes and cognitive organization[J]. The journal of psychology, 1946, 21: 107-112.
[19] GUBANOV D A, CHKHARTISHVILI A G. A conceptual approach to online social networks analysis[J]. Automation and remote control, 2015, 76(8): 1455-1462.
[20] FACCHETTI G, IACONO G, ALTAFINI C. Computing global structural balance in large-scale signed social networks[J]. Proceedings of the national academy of sciences of the United States of America, 2011, 108(52): 20953-20958.
[21] LI Guilu, REN Change, PHILIP CHEN C L. Preview-based leader-following consensus control of distributed multi-agent systems[J]. Information sciences, 2021, 559: 251-269.
[22] GAO Yanping, KOU Kaixuan, ZHANG Weijing, et al. Consensus in networks of agents with cooperative and antagonistic interactions[J]. Mathematics, 2023, 11(4): 921.
[23] GAMBUZZA L V, FRASCA M. Distributed control of multiconsensus[J]. IEEE transactions on automatic control, 2021, 66(5): 2032-2044.
[24] 王晓宇, 刘开恩, 纪志坚, 等. 异质多智能体系统二分一致性的充要条件[J]. 智能系统学报, 2020, 15(4): 679-686.
WANG Xiaoyu, LIU Kaien, JI Zhijian, et al. Necessary and sufficient conditions for bipartite consensus of heterogeneous multi-agent systems[J]. CAAI transactions on intelligent systems, 2020, 15(4): 679-686.
[25] GUAN Yongqiang, WANG Long. Controllability of multi-agent systems with directed and weighted signed networks[J]. Systems & control letters, 2018, 116: 47-55.
[26] SUN Yinshuang, JI Zhijian, LIU Yungang, et al. On stabilizability of multi-agent systems[J]. Automatica, 2022, 144: 110491.
[27] SHE Baike, KAN Zhen. Characterizing controllable subspace and herdability of signed weighted networks via graph partition[J]. Automatica, 2020, 115: 108900.
[28] MORTAZAVIAN H. On k-Controllability and k-Observability of linear systems[M]//Analysis and Optimization of Systems. Berlin/Heidelberg: Springer-Verlag, 2006: 600-612.
[29] CHEN Hong, YONG E H. Optimizing target nodes selection for the control energy of directed complex networks[J]. Scientific reports, 2020, 10(1): 18112.
[30] PóSFAI M, LIU Yangyu, SLOTINE J J, et al. Effect of correlations on network controllability[J]. Scientific reports, 2013, 3: 1067.
[31] 郑大钟. 线性系统理论[M]. 第2版. 北京: 清华大学出版社, 2002.
[32] 魏静, 关永强, 谌煜, 等. 基于领导者选择的聚类平衡网络的可牧性[J]. 控制与决策, 2025, 40(4): 1386-1394.
WEI Jing, GUAN Yongqiang, SHEN Yu. et al. Herdability of clustering balanced networks based on leader selection[J]. Control and decision, 2025, 40(4): 1386-1394.
[33] WANG Wenxu, NI Xuan, LAI Yingcheng, et al. Optimizing controllability of complex networks by minimum structural perturbations[J]. Physical review E, Statistical, nonlinear, and soft matter physics, 2012, 85(2 Pt 2): 026115.
Similar References:

Memo

-

Last Update: 2025-09-05

Copyright © CAAI Transactions on Intelligent Systems