[1]NIU Miaohe,LEI Fei.Motion intention recognition algorithms for lower limb exoskeleton[J].CAAI Transactions on Intelligent Systems,2025,20(2):407-415.[doi:10.11992/tis.202403025]
Copy

Motion intention recognition algorithms for lower limb exoskeleton

References:
[1] 白雪, 梁文渊, 王强, 等. 下肢外骨骼机器人研究进展及趋势[J]. 中国科技信息, 2023(17): 146-149.
BAI Xue, LIANG Wenyuan, WANG Qiang, et al. Research progress and trend of lower limb exoskeleton robot[J]. China science and technology information, 2023(17): 146-149.
[2] 张洋, 谭昕, 程闯. 基于表面肌电信号的下肢运动识别[J]. 机电工程技术, 2023, 52(9): 69-73,151.
ZHANG Yang, TAN Xin, CHENG Chuang. Lower limb motion recognition based on surface EMG signals[J]. Mechanical & electrical engineering technology, 2023, 52(9): 69-73,151.
[3] MILETI I, TABORRI J, TORRICELLI D, et al. Artificial neural network for the identification of postural instability in subject wearing lower limb exoskeleton[C]//2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering. Rome: IEEE, 2022: 651-655.
[4] 田双太. 一种可穿戴机器人的多传感器感知系统研究[D]. 合肥: 中国科学技术大学, 2011.
TIAN Shuangtai. Research on multi-sensor sensing system of wearable robot[D]. Hefei: University of Science and Technology of China, 2011.
[5] 张倩. 下肢外骨骼康复机器人的机构设计与分析[D]. 成都: 电子科技大学, 2013.
ZHANG Qian. Mechanism design and analysis of lower limb exoskeleton rehabilitation robot [D]. Chengdu: University of Electronic Science and Technology of China, 2013.
[6] 蒋靖. 下肢助力外骨骼机构设计与研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
JIANG Jing. Design and research of lower extremity assisted exoskeleton mechanism [D]. Harbin: Harbin Institute of Technology, 2014.
[7] 袁小庆, 邹缓, 吴涛, 等. 基于运动意图识别的上肢助力外骨骼复合控制方法研究[J]. 机械工程学报, 2023, 59(15): 73-82.
YUAN Xiaoqing, ZOU Huan, WU Tao, et al. Compound control method for human-powered augmentation upper exoskeleton based on motion intent recognition[J]. Journal of mechanical engineering, 2023, 59(15): 73-82.
[8] SU Benyue, WANG Jie, LIU Shuangqing, et al. A CNN-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis[J]. IEEE transactions on neural systems and rehabilitation engineering, 2019, 27(5): 1032-1042.
[9] 丁其川, 熊安斌, 赵新刚, 等. 基于表面肌电的运动意图识别方法研究及应用综述[J]. 自动化学报, 2016, 42(1): 13-25.
DING Qichuan, XIONG Anbin, ZHAO Xingang, et al. A review on researches and applications of sEMG-based motion intent recognition methods[J]. Acta automatica sinica, 2016, 42(1): 13-25.
[10] 佟丽娜, 侯增广, 彭亮, 等. 基于多路sEMG时序分析的人体运动模式识别方法[J]. 自动化学报, 2014, 40(5): 810-821.
TONG Lina, HOU Zengguang, PENG Liang, et al. Multi-channel sEMG time series analysis based human motion recognition method[J]. Acta automatica sinica, 2014, 40(5): 810-821.
[11] SONG Ge, WANG Yucheng, WANG Mingming, et al. Lower limb movement intent recognition based on grid search random forest algorithm[C]//Proceedings of the 3rd International Conference on Robotics, Control and Automation. Chengdu: ACM, 2018: 225–229.
[12] WEI Yue, GENG Yanjuan, YU Wenlong, et al. Real-time classification of forearm movements based on high density surface electromyography[C]//2017 IEEE International Conference on Real-time Computing and Robotics. Okinawa: IEEE, 2017: 246-251.
[13] ZHOU Congcong, YANG Lilin, LIAO Heng, et al. Ankle foot motion recognition based on wireless wearable sEMG and acceleration sensors for smart AFO[J]. Sensors and actuators a: physical, 2021, 331: 113025.
[14] SHEN Shu, GU Kang, CHEN Xinrong, et al. Gesture recognition through sEMG with wearable device based on deep learning[J]. Mobile networks and applications, 2020, 25: 2447-2458.
[15] REN Xina, SOO Y G, ODAGAKI M, et al. sEMG-based hand motion recognition system using RMSR and AR model[C]//2017 36th Chinese Control Conference. Dalian: IEEE, 2017: 5410-5415.
[16] ZENG Min, GU J, FENG Ying. Motion prediction based on sEMG- transformer for lower limb exoskeleton robot control[C]//2023 International Conference on Advanced Robotics and Mechatronics. Sanya: IEEE, 2023: 864-869.
[17] WEI Baichun, YI Chunzhi, ZHANG Qi, et al. ActiveSelfHAR: incorporating self-training into active learning to improve cross-subject human activity recognition[J]. IEEE internet of things journal, 2024, 11(4): 6833-6847.
[18] ANDERSON F C, PANDY M G. Individual muscle contributions to support in normal walking[J]. Gait & posture, 2003, 17(2): 159-169.
[19] AYACHI M, SEDDIK H. Overview of EMG signal preprocessing and classification for bionic hand control[C]//2022 IEEE Information Technologies & Smart Industrial Systems. Paris: IEEE, 2022: 1-6.
[20] DE LUCA C J, KUZNETSOV M, GILMORE L D, et al. Inter-electrode spacing of surface EMG sensors: reduction of crosstalk contamination during voluntary contractions[J]. Journal of biomechanics, 2012, 45(3): 555-561.
[21] 杜妍辰, 孙洁, 汪晓铭, 等. 一种基于表面肌电信号映射人体下肢运动意图的方法[J]. 生物医学工程学进展, 2023, 44(2): 158-162.
DU Yanchen, SUN Jie, WANG Xiaoming, et al. A method of human lower limb motion intention mapping based on surface electromyography[J]. Progress in biomedical engineering, 2023, 44(2): 158-162.
[22] WU Yi, FOURN E, BESNIER P. A planar quad-band band-pass filter employing dual-mode band-stop resonators[C]//2021 IEEE MTT-S International Microwave Filter Workshop. Perugia: IEEE, 2021: 1-3.
[23] DENG Yaping, JIA Hao, LI Pengcheng, et al. A deep learning method based on long short term memory and sliding time window for type recognition and time location of power quality disturbance[C]//2018 Chinese Automation Congress. Xi’an: IEEE, 2018: 1764-1768.
[24] BAO Tianzhe, ALI RAZA ZAIDI S, XIE Shengquan, et al. Inter-subject domain adaptation for CNN-based wrist kinematics estimation using sEMG[J]. IEEE transactions on neural systems and rehabilitation engineering, 2021, 29: 1068-1078.
[25] SAITO K, WATANABE K, USHIKU Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3723-3732.
[26] WANG Kun, HUANG Yining, XU Lichao, et al. Decoding of pre-movement EEG patterns using cross-entropy loss-based ensemble learning[C]//2022 16th ICME International Conference on Complex Medical Engineering. Zhongshan: IEEE, 2022: 260-263.
[27] CHO J W, KIM D J, JUNG Y, et al. MCDAL: maximum classifier discrepancy for active learning[J]. IEEE transactions on neural networks and learning systems, 2023, 34(11): 8753-8763.
[28] KONAR J, KHANDELWAL P, TRIPATHI R. Comparison of various learning rate scheduling techniques on convolutional neural network[C]//2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science. Bhopal: IEEE, 2020: 1-5.
[29] IIDUKA H. Appropriate learning rates of adaptive learning rate optimization algorithms for training deep neural networks[J]. IEEE transactions on cybernetics, 2022, 52(12): 13250-13261.
[30] LLUGSI R, EL YACOUBI S, FONTAINE A, et al. Comparison between Adam, AdaMax and AdamW optimizers to implement a weather forecast based on neural networks for the Andean city of Quito[C]//2021 IEEE Fifth Ecuador Technical Chapters Meeting. Cuenca: IEEE, 2021: 1-6.
[31] RAY N T, KNARR B A, HIGGINSON J S. Walking speed changes in response to novel user-driven treadmill control[J]. Journal of biomechanics, 2018, 78: 143-149.
[32] RAFFALT P, GUUL M K, NIELSEN A, et al. Economy, movement dynamics, and muscle activity of human walking at different speeds[J]. Scientific reports, 2017, 7(1): 43986.
Similar References:

Memo

-

Last Update: 2025-03-05

Copyright © CAAI Transactions on Intelligent Systems