[1]LU Jun,WANG Wenhao,DU Hongjin.Point cloud registration based on feature fusion and network sampling[J].CAAI Transactions on Intelligent Systems,2025,20(3):621-630.[doi:10.11992/tis.202403022]
Copy

Point cloud registration based on feature fusion and network sampling

References:
[1] 张新钰, 邹镇洪, 李志伟, 等. 面向自动驾驶目标检测的深度多模态融合技术[J]. 智能系统学报, 2020, 15(4): 758-771.
ZHANG Xinyu, ZOU Zhenhong, LI Zhiwei, et al. Deep multi-modal fusion in object detection for autonomous driving[J]. CAAI transactions on intelligent systems, 2020, 15(4): 758-771.
[2] CHEN Kai, HONG Lanqing, XU Hang, et al. MultiSiam: self-supervised multi-instance Siamese representation learning for autonomous driving[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 7526-7534.
[3] MA Gang, WEI Hui. A novel sketch-based framework utilizing contour cues for efficient point cloud registration[J]. IEEE transactions on geoscience and remote sensing, 2023, 61: 5703616.
[4] PEREZ-GONZALEZ J, LUNA-MADRIGAL F, PI?A-RAMIREZ O. Deep learning point cloud registration based on distance features[J]. IEEE Latin America transactions, 2019, 17(12): 2053-2060.
[5] SEGAL A, HAEHNEL D, THRUN S. Generalized-ICP[C]//Robotics: Science and Systems. Seattle: MIT Press, 2009.
[6] YANG Jiaolong, LI Hongdong, JIA Yunde. Go-ICP: solving 3D registration efficiently and globally optimally[C]//2013 IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 1457-1464.
[7] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009: 3212-3217.
[8] SANG Mengting, WANG Wei, PAN Yani. RGB-ICP method to calculate ground three-dimensional deformation based on point cloud from airborne LiDAR[J]. Remote sensing, 2022, 14(19): 4851.
[9] SHI Weijing, RAJKUMAR R. Point-GNN: graph neural network for 3D object detection in a point cloud[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1708-1716.
[10] XIE Yifan, ZHU Jihua, LI Shiqi, et al. Cross-modal information-guided network using contrastive learning for point cloud registration[J]. IEEE robotics and automation letters, 2024, 9(1): 103-110.
[11] 陆军, 邵红旭, 王伟, 等. 基于关键点特征匹配的点云配准方法[J]. 北京理工大学学报, 2020, 40(4): 409-415.
LU Jun, SHAO Hongxu, WANG Wei, et al. Point cloud registration method based on key point extraction with small overlap[J]. Transactions of Beijing Institute of Technology, 2020, 40(4): 409-415.
[12] ISHIHARA K, KANERVISTO A, MIURA J, et al. Multi-task learning with attention for end-to-end autonomous driving[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Nashville: IEEE, 2021: 2902-2911.
[13] WANG Li, DU Liang, YE Xiaoqing, et al. Depth-conditioned dynamic message propagation for monocular 3D object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 454-463.
[14] YAN Zihao, YI Zimu, HU Ruizhen, et al. Consistent two-flow network for tele-registration of point clouds[J]. IEEE transactions on visualization and computer graphics, 2022, 28(12): 4304-4318.
[15] DENG Haowen, BIRDAL T, ILIC S. PPFNet: global context aware local features for robust 3D point matching[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 195-205.
[16] CHOY C, GWAK J, SAVARESE S. 4D spatio-temporal ConvNets: minkowski convolutional neural networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3070-3079.
[17] BAI Xuyang, LUO Zixin, ZHOU Lei, et al. D3Feat: joint learning of dense detection and description of 3D local features[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6358-6366.
[18] HUANG Shengyu, GOJCIC Z, USVYATSOV M, et al. PREDATOR: registration of 3D point clouds with low overlap[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 4267-4276.
[19] LU Weixin, WAN Guowei, ZHOU Yao, et al. DeepVCP: an end-to-end deep neural network for point cloud registration[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 12-21.
[20] YEW Z J, LEE G H. RPM-net: robust point matching using learned features[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11821-11830.
[21] SARODE V, LI Xueqian, GOFORTH H, et al. PCRNet: point cloud registration network using PointNet encoding[EB/OL]. (2019-11-04)[2024-01-01]. https://arxiv.org/abs/1908.07906v2.
[22] GE Xuming, HU Han, WU Bo. Image-guided registration of unordered terrestrial laser scanning point clouds for urban scenes[J]. IEEE transactions on geoscience and remote sensing, 2019, 57(11): 9264-9276.
[23] YUAN Hanjie, HE Yang, DONG Limeng, et al. Multi-spectral registration fusion based on laser point cloud[C]//2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms. Changchun: IEEE, 2022: 50-53.
[24] WANG Huaqiang, HUANG Lu, YU Kang, et al. Deep-learning-based multiview RGBD sensor system for 3-D face point cloud registration[J]. IEEE sensors letters, 2023, 7(5): 7001804.
[25] HE Chenhang, ZENG Hui, HUANG Jianqiang, et al. Structure aware single-stage 3D object detection from point cloud[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11870-11879.
[26] WU Yue, YAO Qianlin, FAN Xiaolong, et al. PANet: a point-attention based multi-scale feature fusion network for point cloud registration[J]. IEEE transactions on instrumentation and measurement, 2023, 72: 2512913.
[27] KADAM P, ZHANG Min, LIU Shan, et al. R-PointHop: a green, accurate, and unsupervised point cloud registration method[J]. IEEE transactions on image processing, 2022, 31: 2710-2725.
[28] WANG Yue, SOLOMON J. Deep closest point: learning representations for point cloud registration[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3522-3531.
[29] YANG Zetong, SUN Yanan, LIU Shu, et al. 3DSSD: point-based 3D single stage object detector[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11037-11045.
[30] QI C R, YI Li, SU Hao, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. (2017-06-07)[2024-01-01]. https://arxiv.org/abs/1706.02413v1.
[31] WANG Yongqiang, ZHANG Di, NI Lihua, et al. A novel keypoint detection method for radar point cloud registration[J]. IEEE sensors letters, 2023, 7(12): 3503204.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems