[1]WEI Junyi,DONG Hongbin,YU Zikang.Hypernetwork design for feature selection of high-dimensional small samples[J].CAAI Transactions on Intelligent Systems,2025,20(2):465-474.[doi:10.11992/tis.202402018]
Copy

Hypernetwork design for feature selection of high-dimensional small samples

References:
[1] 余紫康, 董红斌. 具有混合策略的樽海鞘群特征选择算法[J]. 智能系统学报, 2024, 19(3): 757-765.
YU Zikang, DONG Hongbin. Salp swarm feature selection algorithm with a hybrid strategy[J]. CAAI transactions on intelligent systems, 2024, 19(3): 757-765.
[2] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of machine learning research, 2014, 15: 1929-1958.
[3] 金红, 胡智群. 基于非负矩阵分解的稀疏网络社区发现算法[J]. 电子学报, 2023, 51(10): 2950-2959.
JIN Hong, HU Zhiqun. The non-negative matrix factorization based algorithm for community detection in sparse networks[J]. Acta electronica sinica, 2023, 51(10): 2950-2959.
[4] 谢承旺, 郭华, 韦伟, 等. MaOEA/d2: 一种基于双距离构造的高维多目标进化算法[J]. 软件学报, 2023, 34(4): 1523-1542.
XIE Chengwang, GUO Hua, WEI Wei, et al. MaOEA/d2: many-objective evolutionary algorithm based on double distances[J]. Journal of software, 2023, 34(4): 1523-1542.
[5] 胡艳梅, 杨波, 多滨. 基于网络结构的正则化逻辑回归[J]. 计算机科学, 2021, 48(7): 281-291.
HU Yanmei, YANG Bo, DUO Bin. Logistic regression with regularization based on network structure[J]. Computer science, 2021, 48(7): 281-291.
[6] LIU Bo, WEI Ying, ZHANG Yu, et al. Deep neural networks for high dimension, low sample size data[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne: IJCAI, 2017: 2287-2293.
[7] KADRA A, LINDAUER M, HUTTER F, et al. Well-tuned simple nets excel on tabular datasets[EB/OL]. (2021-06-21)[2024-02-20]. https://arxiv.org/abs/2106.11189.
[8] CHEN Tianqi, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794.
[9] VON OSWALD J, HENNING C, GREWE B F, et al. Continual learning with hypernetworks[EB/OL]. (2019-06-03)[2024-02-20]. https://arxiv.org/abs/1906.00695.
[10] ZHANG Lin, LI Xin, HE Dongliang, et al. RRSR: reciprocal reference-based image super-resolution with progressive feature alignment and selection[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 648-664.
[11] ROMERO A, CARRIER P L, ERRAQABI A, et al. Diet networks: thin parameters for fat genomics[C]//International Conference on Learning Representations. Toulon: OpenReview.net, 2017: 1-11.
[12] BALIN M F, ABID A, ZOU J Y. Concrete autoencoders: differentiable feature selection and reconstruction[C]//International Conference on Machine Learning. Los Angeles: PMLR, 2019: 444-453.
[13] SINGH D, CLIMENTE-GONZALEZ H, PETROVICH M, et al. FsNet: feature selection network on high-dimensional biological data[C]//2023 International Joint Conference on Neural Networks. Gold Coast: IEEE, 2023: 1-9.
[14] MARGELOIU A, SIMIDJIEVSKI N, LIò P, et al. Weight predictor network with feature selection for small sample tabular biomedical data[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Washington: AAAI, 2023: 9081-9089.
[15] 黄路路, 唐舒宇, 张伟, 等. 基于Lp范数的非负矩阵分解并行优化算法[J]. 计算机科学, 2024, 51(2): 100-106.
HUANG Lulu, TANG Shuyu, ZHANG Wei, et al. Non-negative matrix factorization parallel optimization algorithm based on Lp-norm[J]. Computer science, 2024, 51(2): 100-106.
[16] LEMHADRI I, RUAN Feng, TIBSHIRANI R. LassoNet: neural networks with feature sparsity[J]. The journal of machine learning research, 2021, 22(1): 5633-5661.
[17] OBOZINSKI G, TASKAR B, JORDAN M. Multi-task feature selection[J]. Statistics department, UC Berkeley, Tech. Rep, 2006, 2(2.2): 2.
[18] HUANG Xiao, SONG Qingquan, YANG Fan, et al. Large-scale heterogeneous feature embedding[C]// Proceedings of the AAAI conference on artificial intelligence. Honolulu: AAAI, 2019: 3878-3885.
[19] 刘宇宸, 宗成庆. 跨模态信息融合的端到端语音翻译[J]. 软件学报, 2023, 34(4): 1837-1849.
LIU Yuchen, ZONG Chengqing. End-to-end speech translation by integrating cross-modal information[J]. Journal of software, 2023, 34(4): 1837-1849.
[20] CHEN Haochen, SULTAN S F, TIAN Yingtao, et al. Fast and accurate network embeddings via very sparse random projection[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019: 399-408.
[21] KAUR G, SINGH S, RANI R, et al. A comprehensive study of reversible data hiding (RDH) schemes based on pixel value ordering (PVO)[J]. Archives of computational methods in engineering, 2021, 28(5): 3517-3568.
[22] KHAN Z, ILTAF N, AFZAL H, et al. Enriching non-negative matrix factorization with contextual embeddings for recommender systems[J]. Neurocomputing, 2020, 380: 246-258.
[23] HUANG Tianlin, ZHAO Rujie, BI Lvqing, et al. Neural embedding singular value decomposition for collaborative filtering[J]. IEEE transactions on neural networks and learning systems, 2022, 33(10): 6021-6029.
[24] LIU Haoyue, ZHOU Mengchu, LIU Qing. An embedded feature selection method for imbalanced data classification[J]. IEEE/CAA journal of automatica sinica, 2019, 6(3): 703-715.
[25] YAO Zhewei, GHOLAMI A, SHEN Sheng, et al. ADAHESSIAN: an adaptive second order optimizer for machine learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver: AAAI, 2021: 10665-10673.
[26] YANG Junchen, LINDENBAUM O, KLUGER Y. Locally sparse neural networks for tabular biomedical data[C]//International Conference on Machine Learning. Baltimore: PMLR, 2022: 25123-25153.
Similar References:

Memo

-

Last Update: 2025-03-05

Copyright © CAAI Transactions on Intelligent Systems