[1]HU Xingchen,LI Yan,CHEN Zijian,et al.Review of the research of granular fuzzy rule-based modeling[J].CAAI Transactions on Intelligent Systems,2024,19(1):22-35.[doi:10.11992/tis.202306034]
Copy

Review of the research of granular fuzzy rule-based modeling

References:
[1] 苗夺谦, 张清华, 钱宇华, 等. 从人类智能到机器实现模型: 粒计算理论与方法[J]. 智能系统学报, 2016, 11(6): 743–757
MIAO Duoqian, ZHANG Qinghua, QIAN Yuhua, et al. From human intelligence to machine implementation model: theories and applications based on granular computing[J]. CAAI transactions on intelligent systems, 2016, 11(6): 743–757
[2] NORI H, JENKINS S, KOCH P, et al. Interpretml: a unified framework for machine learning interpretability[J]. (2019?09?19)[2023?06?15]. https://arxiv.org/abs/1909.09223v1.pdf.
[3] 焦李成. 类脑感知与认知的挑战与思考[J]. 智能系统学报, 2022, 17(1): 213–216
JIAO Licheng. Challenges and reflections on brain-like perception and cognition[J]. CAAI transactions on intelligent systems, 2022, 17(1): 213–216
[4] WANG Guoyin, YANG Jie, XU Ji. Granular computing: from granularity optimization to multi-granularity joint problem solving[J]. Granular computing, 2017, 2(3): 105–120.
[5] ZADEH L A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy sets and systems, 1997, 90(2): 111–127.
[6] YAO Y. Perspectives of granular computing[C]//2005 IEEE International Conference on Granular Computing. Piscataway: IEEE, 2005: 85?90.
[7] HOBBS J R. Granularity[M]. Amsterdam: Elsevier, 1990: 542?545.
[8] LIN T Y. Neighborhood systems and relational databases[C]//Proceedings of the 1988 ACM sixteenth annual conference on Computer science. New York: ACM, 1988: 725.
[9] LIN T Y. Granular computing: fuzzy logic and rough sets[M]. Heidelberg: Physica-Verlag HD, 1999: 183?200.
[10] YAO Yiyu. A partition model of granular computing[M. Heidelberg: Springer Berlin Heidelberg, 2004: 232?253.
[11] PAWLAK Z. Rough set theory and its applications to data analysis[J]. Cybernetics and systems, 1998, 29(7): 661–688.
[12] ZADEH L A. Fuzzy logic = computing with words[J]. IEEE transactions on fuzzy systems, 1996, 4(2): 103–111.
[13] YAO Y Y. Granular computing: basic issues and possible solutions[J]. Proceedings of the joint conference on information sciences, 2000, 5(1): 186–189.
[14] WANG Guoyin, HU Feng, HUANG Hai, et al. A granular computing model based on tolerance relation[J]. The journal of China universities of posts and telecommunications, 2005, 12(3): 86–90.
[15] 胡峰, 黄海, 王国胤, 等. 不完备信息系统的粒计算方法[J]. 小型微型计算机系统, 2005, 26(8): 1335–1339
HU Feng, HUANG Hai, WANG Guoyin, et al. Granular computing in incomplete information systems[J]. Mini-micro systems, 2005, 26(8): 1335–1339
[16] 张铃, 张钹. 模糊相容商空间与模糊子集[J]. 中国科学:信息科学, 2011, 41(1): 1–11
ZHANG Ling, ZHANG Bo. Fuzzy tolerance quotient spaces and fuzzy subsets[J]. Scientia sinica (informationis), 2011, 41(1): 1–11
[17] ZHANG Yanping, ZHANG Ling, WU Tao. Description method of different granularity world?Business Space Law[J]. Chinese journal of computers, 2004, 27(3): 328–333.
[18] 王国胤, 张清华, 马希骜, 等. 知识不确定性问题的粒计算模型[J]. 软件学报, 2011, 22(4): 676–694
WANG Guoyin, ZHANG Qinghua, MA Xiao, et al. Granular computing models for knowledge uncertainty[J]. Journal of software, 2011, 22(4): 676–694
[19] 李道国, 苗夺谦, 张红云. 粒度计算的理论、模型与方法[J]. 复旦学报(自然科学版), 2004, 43(5): 837–841
LI Daoguo, MIAO Duoqian, ZHANG Hongyun. The theory models and approaches of granular computing[J]. Journal of Fudan University, 2004, 43(5): 837–841
[20] 苗夺谦, 胡声丹. 基于粒计算的不确定性分析[J]. 西北大学学报(自然科学版), 2019, 49(4): 487–495
MIAO Duoqian, HU Shengdan. Uncertainty analysis based on granular computing[J]. Journal of Northwest University (natural science edition), 2019, 49(4): 487–495
[21] LEITE D, COSTA P, GOMIDE F. Evolving granular neural networks from fuzzy data streams[J]. Neural networks, 2013, 38: 1–16.
[22] SONG Mingli, WANG Yongbin. A study of granular computing in the agenda of growth of artificial neural networks[J]. Granular computing, 2016, 1(4): 247–257.
[23] 罗建豪, 吴建鑫. 基于深度卷积特征的细粒度图像分类研究综述[J]. 自动化学报, 2017, 43(8): 1306–1318
LUO Jianhao, WU Jianxin. A survey on fine-grained image categorization using deep convolutional features[J]. Acta automatica sinica, 2017, 43(8): 1306–1318
[24] 任俊伟, 曾诚, 肖丝雨, 等. 基于会话的多粒度图神经网络推荐模型[J]. 计算机应用, 2021, 41(11): 3164–3170
REN Junwei, ZENG Cheng, XIAO Siyu, et al. Session-based recommendation model of multi-granular graph neural network[J]. Journal of computer applications, 2021, 41(11): 3164–3170
[25] PEDRYCZ W, HOMENDA W. From fuzzy cognitive maps to granular cognitive maps[J]. IEEE transactions on fuzzy systems, 2014, 22(4): 859–869.
[26] WANG Yihan, YU Fusheng, HOMENDA W, et al. The trend-fuzzy-granulation-based adaptive fuzzy cognitive map for long-term time series forecasting[J]. IEEE transactions on fuzzy systems, 2022, 30(12): 5166–5180.
[27] FALCON R, NáPOLES G, BELLO R, et al. Granular cognitive maps: a review[J]. Granular computing, 2019, 4(3): 451–467.
[28] QIN Jindong, MARTíNEZ L, PEDRYCZ W, et al. An overview of granular computing in decision-making: extensions, applications, and challenges[J]. Information fusion, 2023, 98: 101833.
[29] LIU Keyu, YANG Xibei, FUJITA H, et al. An efficient selector for multi-granularity attribute reduction[J]. Information sciences, 2019, 505: 457–472.
[30] YANG Xin, LI Tianrui, LIU Dun, et al. A temporal-spatial composite sequential approach of three-way granular computing[J]. Information sciences, 2019, 486: 171–189.
[31] LIU Dun, YANG Xin, LI Tianrui. Three-way decisions: beyond rough sets and granular computing[J]. International journal of machine learning and cybernetics, 2020, 11(5): 989–1002.
[32] SONG Mingli, LI Yan, PEDRYCZ W. Time series prediction with granular neural networks[J]. Neurocomputing, 2023, 546: 126328.
[33] PEDRYCZ W, BARGIELA A. An optimization of allocation of information granularity in the interpretation of data structures: toward granular fuzzy clustering[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 2012, 42(3): 582–590.
[34] PEDRYCZ W. Granular computing for data analytics: a manifesto of human-centric computing[J]. CAA journal of automatica sinica, 2018, 5(6): 1025–1034.
[35] PEDRYCZ W, VALENTE DE OLIVEIRA J. A development of fuzzy encoding and decoding through fuzzy clustering[J]. IEEE transactions on instrumentation and measurement, 2008, 57(4): 829–837.
[36] ZHANG Liyong, ZHONG Wanxie, ZHONG Chongquan, et al. Fuzzy C-Means clustering based on dual expression between cluster prototypes and reconstructed data[J]. International journal of approximate reasoning, 2017, 90: 389–410.
[37] ZHU Xiubin, PEDRYCZ W, LI Zhiwu. Fuzzy clustering with nonlinearly transformed data[J]. Applied soft computing, 2017, 61: 364–376.
[38] PEDRYCZ A, HIROTA K, PEDRYCZ W, et al. Granular representation and granular computing with fuzzy sets[J]. Fuzzy sets and systems, 2012, 203: 17–32.
[39] WANG Hai, XU Zeshui, PEDRYCZ W. An overview on the roles of fuzzy set techniques in big data processing: trends, challenges and opportunities[J]. Knowledge-based systems, 2017, 118: 15–30.
[40] WANG Guoyin. Extension of rough set under incomplete information systems[C]//2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE’02. Proceedings (Cat. No. 02CH37291). Piscataway: IEEE, 2002: 1098?1103.
[41] 韩祯祥, 张琦, 文福拴. 粗糙集理论及其应用综述[J]. 控制理论与应用, 1999, 16(2): 153–157
HAN Zhenxiang, ZHANG Qi, WEN Fushuan. A survey on rough set theory and its application[J]. Control theory & applications, 1999, 16(2): 153–157
[42] LI Deyi, LIU Changyu, GAN Wenyan. A new cognitive model: cloud model[J]. International journal of intelligent systems, 2009, 24(3): 357–375.
[43] WANG Guoyin, XU Changlin, LI Deyi. Generic normal cloud model[J]. Information sciences, 2014, 280: 1–15.
[44] An A, Stefanowski J, Ramanna S, et al. Rough sets, fuzzy sets, data mining and granular computing[C]//Proceedings of RSFDGrC2007, LNAI4482, Berlin:Springer-Verlag, 2007:.
[45] DESCHRIJVER G. Arithmetic operators in interval-valued fuzzy set theory[J]. Information sciences, 2007, 177(14): 2906–2924.
[46] CASTILLO O, MELIN P, KACPRZYK J, et al. Type-2 fuzzy logic: theory and applications[C]//2007 IEEE International Conference on Granular Computing (GRC 2007). Piscataway: IEEE, 2007: 145?145.
[47] JI W, PANG Y, JIA X, et al. Fuzzy rough sets and fuzzy rough neural networks for feature selection: a review[J]. Wiley interdisciplinary reviews:data mining and knowledge discovery, 2021, 11(3): e1402.
[48] XU W, WANG Q, ZHANG X. Multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space[J]. International journal of fuzzy systems, 2011, 13(4).
[49] 张钹, 张铃. 问题求解理论及应用[M]. 北京: 清华大学出版社, 1990.
ZHANG Bai, ZHANG Ling. Theory and application of problem sSolving [M]. Beijing: Tsinghua University Press, 1990. (in Chinese)
[50] 张铃, 张钹. 模糊商空间理论(模糊粒度计算方法)[J]. 软件学报, 2003, 14(4): 770–776
ZHANG Ling, ZHANG Bo. Theory of fuzzy quotient space (methods of fuzzy granular computing)[J]. Journal of software, 2003, 14(4): 770–776
[51] 李德毅, 刘常昱, 杜鹢, 等. 不确定性人工智能[J]. 软件学报, 2004, 15(11): 1583–1594
LI Deyi, LIU Changyu, DU Yi, et al. Artificial intelligence with uncertainty[J]. Journal of software, 2004, 15(11): 1583–1594
[52] 王国胤, 云模型与粒计算[M]. 北京:科学出版社,2012.
WANG Guoyin. Cloud model and particle computing[M]. Beijing: Science Press, 2012.
[53] MAGDALENA L. Fuzzy rule-based systems[M]. Heidelberg: Springer Berlin Heidelberg, 2015: 203?218.
[54] PEDRYCZ W. From fuzzy models to granular fuzzy models[J]. International journal of computational intelligence systems, 2016, 9(suppl 1): 35.
[55] CASILLAS J, CORDON O, DEL JESUS M J, et al. Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction[J]. IEEE transactions on fuzzy systems, 2005, 13(1): 13–29.
[56] CORDóN O. A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems[J]. International journal of approximate reasoning, 2011, 52(6): 894–913.
[57] XU R, WUNSCHII D. Survey of clustering algorithms[J]. IEEE transactions on neural networks, 2005, 16(3): 645–678.
[58] BARALDI A, BLONDA P. A survey of fuzzy clustering algorithms for pattern recognition. I[J]. IEEE transactions on systems, man and cybernetics, part B (cybernetics), 1999, 29(6): 778–785.
[59] BEZDEK J C, EHRLICH R, FULL W. FCM: the fuzzy c-means clustering algorithm[J]. Computers & geosciences, 1984, 10(2/3): 191–203.
[60] SUGANYA R, SHANTHI R. Fuzzy c-means algorithm-a review[J]. International journal of scientific and research publications, 2012, 2(11): 1.
[61] DING Yi, FU Xian. Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm[J]. Neurocomputing, 2016, 188: 233–238.
[62] HANYU E, CUI Ye, PEDRYCZ W, et al. Enhancements of rule-based models through refinements of Fuzzy C-Means[J]. Knowledge-based systems, 2019, 170: 43–60.
[63] Zhao F, Li G, Guo H, et al. Rule-based models via the axiomatic fuzzy set clustering and their granular aggregation[J]. Applied Soft Computing, 2022, 130: 109692.
[64] ANGELOV P P, FILEV D P. An approach to online identification of Takagi-Sugeno fuzzy models[J]. IEEE transactions on systems, man, and cybernetics part B, cybernetics:a publication of the IEEE systems, man, and cybernetics society, 2004, 34(1): 484–498.
[65] HU Xingchen, PEDRYCZ W, WANG Xianmin. From fuzzy rule-based models to their granular generalizations[J]. Knowledge-based systems, 2017, 124: 133–143.
[66] ZHANG X, ZHU Z, ZHAO Y, et al. Self-supervised deep low-rank asignment model for prototype selection[C]//IJCAI. 2018: 3141?3147.
[67] Wang S, Mao W, Wei P, et al. Knowledge structure driven prototype learning and verification for fact checking[J]. Knowledge-Based Systems, 2022, 238: 107910.
[68] LIN Shuai, LIU Chen, ZHOU Pan, et al. Prototypical graph contrastive learning[J]. IEEE transactions on neural networks and learning systems, 2021, 35(2): 2747–2758.
[69] CHEN Min, MIAO Duoqian. Interval set clustering[J]. Expert systems with applications, 2011, 38(4): 2923–2932.
[70] MOORE R E, KEARFOTT R B, CLOUD M J. Introduction to interval analysis[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2009.
[71] ALEFELD G, HERZBERGER J. Introduction to interval computation[M]. Herzberger: Academic press, 2012.
[72] ZHANG Qinghua, XIE Qin, WANG Guoyin. A survey on rough set theory and its applications[J]. CAAI transactions on intelligence technology, 2016, 1(4): 323–333.
[73] CAO Bin, ZHAO Jianwei, LV Zhihan, et al. Multiobjective evolution of fuzzy rough neural network via distributed parallelism for stock prediction[J]. IEEE transactions on fuzzy systems, 2020, 28(5): 939–952.
[74] YANG Jilin, YAO Yiyu. A three-way decision based construction of shadowed sets from atanassov intuitionistic fuzzy sets[J]. Information sciences, 2021, 577: 1–21.
[75] ZHANG Qinghua, CHEN Yuhong, YANG Jie, et al. Fuzzy entropy: a more comprehensible perspective for interval shadowed sets of fuzzy sets[J]. IEEE transactions on fuzzy systems, 2020, 28(11): 3008–3022.
[76] BOSE A, MALI K. Gradual representation of shadowed set for clustering gene expression data[J]. Applied soft computing, 2019, 83: 105614.
[77] LIU Xiaodong, PEDRYCZ W, CHAI Tianyou, et al. The development of fuzzy rough sets with the use of structures and algebras of axiomatic fuzzy sets[J]. IEEE transactions on knowledge and data engineering, 2009, 21(3): 443–462.
[78] HIROTA K. Concepts of probabilistic sets[J]. Fuzzy sets and systems, 1981, 5(1): 31–46.
[79] FUJITA H, GAETA A, LOIA V, et al. Hypotheses analysis and assessment in counterterrorism activities: a method based on OWA and fuzzy probabilistic rough sets[J]. IEEE transactions on fuzzy systems, 2020, 28(5): 831–845.
[80] SUN Junzi. The 1090 megahertz riddle: a guide to decoding mode S and ADS-B signals[M]. Delft: TU Delft OPEN, 2021.
[81] NACHMANI E, MARCIANO E, LUGOSCH L, et al. Deep learning methods for improved decoding of linear codes[J]. IEEE journal of selected topics in signal processing, 2018, 12(1): 119–131.
[82] PEDRYCZ W. An introduction to computing with fuzzy sets[J]. IEEE ASSP magazine, 2021: 190.
[83] HU Xingchen, PEDRYCZ W, WU Guohua, et al. Data reconstruction with information granules: an augmented method of fuzzy clustering[J]. Applied soft computing, 2017, 55: 523–532.
[84] GRAVES D, PEDRYCZ W. Kernel-based fuzzy clustering and fuzzy clustering: a comparative experimental study[J]. Fuzzy sets and systems, 2010, 161(4): 522–543.
[85] REYES-GALAVIZ O F, PEDRYCZ W. Enhancement of the classification and reconstruction performance of fuzzy C-means with refinements of prototypes[J]. Fuzzy sets and systems, 2017, 318: 80–99.
[86] XU Kaijie, PEDRYCZ W, LI Zhiwu, et al. Optimizing the prototypes with a novel data weighting algorithm for enhancing the classification performance of fuzzy clustering[J]. Fuzzy Sets and Systems, 2021, 413: 29–41.
[87] IZAKIAN H, PEDRYCZ W, JAMAL I. Clustering spatiotemporal data: an augmented fuzzy C-means[J]. IEEE transactions on fuzzy systems, 2013, 21(5): 855–868.
[88] IZAKIAN H, PEDRYCZ W. Anomaly detection in time series data using a fuzzy c-means clustering[C]//2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS). Piscataway IEEE, 2013: 1513?1518.
[89] REYES-GALAVIZ O F, PEDRYCZ W. Granular fuzzy modeling with evolving hyperboxes in multi-dimensional space of numerical data[J]. Neurocomputing, 2015, 168: 240–253.
[90] ZHU Xiubin, PEDRYCZ W, LI Zhiwu. Granular representation of data: a design of families of ?-information granules[J]. IEEE transactions on fuzzy systems, 2018, 26(4): 2107–2119.
[91] ZHANG Rui, XU Kaijie, ZHU Shengqi, et al. Modeling of number of sources detection under nonideal conditions based on fuzzy information granulation[J]. IEEE transactions on aerospace and electronic systems, 2022: 1?10.
[92] PEDRYCZ W, HIROTA K. Fuzzy vector quantization with the particle swarm optimization: a study in fuzzy granulation-degranulation information processing[J]. Signal processing, 2007, 87(9): 2061–2074.
[93] LINDA O, MANIC M. General type-2 fuzzy C-means algorithm for uncertain fuzzy clustering[J]. IEEE transactions on fuzzy systems, 2012, 20(5): 883–897.
[94] ROH S B, OH S K, PEDRYCZ W, et al. Design methodology for radial basis function neural networks classifier based on locally linear reconstruction and conditional fuzzy C-means clustering[J]. International journal of approximate reasoning, 2019(106): 228–243.
[95] HU Xingchen, PEDRYCZ W, WANG Xianmin. Granular fuzzy rule-based models: a study in a comprehensive evaluation and construction of fuzzy models[J]. IEEE transactions on fuzzy systems, 2017, 25(5): 1342–1355.
[96] ZHU Xiubin, PEDRYCZ W, LI Zhiwu. A design of granular takagi–sugeno fuzzy model through the synergy of fuzzy subspace clustering and optimal allocation of information granularity[J]. IEEE transactions on fuzzy systems, 2018, 26(5): 2499–2509.
[97] PEDRYCZ W, AL-HMOUZ R, BALAMASH A S, et al. Designing granular fuzzy models: a hierarchical approach to fuzzy modeling[J]. Knowledge-based systems, 2015, 76: 42–52.
[98] LI Yan, HU Xingchen, PEDRYCZ W, et al. Multivariable fuzzy rule-based models and their granular generalization: a visual interpretable framework[J]. Applied soft computing, 2023, 134: 109958.
[99] HU Xingchen, PEDRYCZ W, WANG Xianmin. Optimal allocation of information granularity in system modeling through the maximization of information specificity: a development of granular input space[J]. Applied soft computing, 2016, 42: 410–422.
[100] SONG Mingli, JING Yukai. Granular neural networks: the development of granular input spaces and parameters spaces through a hierarchical allocation of information granularity[J]. Information sciences, 2020, 517: 148–166.
[101] ZHONG Chunfu, PEDRYCZ W, WANG Dan, et al. Granular data imputation: a framework of Granular Computing[J]. Applied soft computing, 2016, 46: 307–316.
[102] HU Xingchen, PEDRYCZ W, WU Keyu, et al. Information Granule-based classifier: a development of granular imputation of missing data[J]. Knowledge-based systems, 2021, 214: 106737.
[103] LI Menghang, WANG Degang, SONG Wenyan. A design of direct granular model based on takagi-sugeno fuzzy model[C]//2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS). Piscataway IEEE, 2020: 457?462.
[104] ZHU Xiubin, PEDRYCZ W, LI Zhiwu. A granular approach to interval output estimation for rule-based fuzzy models[J]. IEEE transactions on cybernetics, 2022, 52(7): 7029–7038.
[105] SHEN Yinghua, PEDRYCZ W, JING Xuyang, et al. Identification of fuzzy rule-based models with output space knowledge guidance[J]. IEEE transactions on fuzzy systems, 2021, 29(11): 3504–3518.
[106] ZHANG Bowen, PEDRYCZ W, FAYEK A R, et al. Granular aggregation of fuzzy rule-based models in distributed data environment[J]. IEEE transactions on fuzzy systems, 2021, 29(5): 1297–1310.
[107] LU Wei, SHAN Dan, PEDRYCZ W, et al. Granular fuzzy modeling for multidimensional numeric data: a layered approach based on hyperbox[J]. IEEE transactions on fuzzy systems, 2019, 27(4): 775–789.
[108] LU Wei, PEDRYCZ W, YANG Jianhua, et al. Granular fuzzy modeling guided through the synergy of granulating output space and clustering input subspaces[J]. IEEE transactions on cybernetics, 2021, 51(5): 2625–2638.
[109] LU Wei, MA Cong, PEDRYCZ W, et al. Design of granular model: a method driven by hyper-box iteration granulation[J]. IEEE transactions on cybernetics, 2023, 53(5): 2899–2913.
[110] SONG Mingli, WANG Yongbin. Human centricity and information granularity in the agenda of theories and applications of soft computing[J]. Applied soft computing, 2015, 27: 610–613.
[111] LU Wei, ZHANG Liyong, PEDRYCZ W, et al. The granular extension of Sugeno-type fuzzy models based on optimal allocation of information granularity and its application to forecasting of time series[J]. Applied soft computing, 2016, 42: 38–52.
[112] ZUO Hua, ZHANG Guangquan, PEDRYCZ W, et al. Granular fuzzy regression domain adaptation in takagi–sugeno fuzzy models[J]. IEEE transactions on fuzzy systems, 2018, 26(2): 847–858.
[113] SONG Mingli, LIU Yapeng. A development framework of granular prototypes with an allocation of information granularity[J]. Information sciences, 2021, 573: 154–170.
[114] ZHU Xiubin, PEDRYCZ W, LI Zhiwu. A development of hierarchically structured granular models realized through allocation of information granularity[J]. IEEE transactions on fuzzy systems, 2021, 29(12): 3845–3858.
[115] 柳春华, 刘宏兵. 基于多目标优化的超盒粒计算分类算法[J]. 信阳师范学院学报(自然科学版), 2014, 27(1): 127–130
LIU Chunhua, LIU Hongbing. The hyperbox granular computing classification algorithm based on multi-objective optimization[J]. Journal of Xinyang Normal University (natural science edition), 2014, 27(1): 127–130
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems