[1]HUANG Yucheng,XIAO Ziwang,WU Danfeng,et al.Spatiotemporal fusion and discriminative augmentation for improved Siamese tracking[J].CAAI Transactions on Intelligent Systems,2024,19(5):1218-1227.[doi:10.11992/tis.202306005]
Copy

Spatiotemporal fusion and discriminative augmentation for improved Siamese tracking

References:
[1] 韩瑞泽, 冯伟, 郭青, 等. 视频单目标跟踪研究进展综述[J]. 计算机学报, 2022, 45(9): 1877-1907.
HAN Ruize, FENG Wei, GUO Qing, et al. Single object tracking research: a survey[J]. Chinese journal of computers, 2022, 45(9): 1877-1907.
[2] 王梦亭, 杨文忠, 武雍智. 基于孪生网络的单目标跟踪算法综述[J]. 计算机应用, 2023, 43(3): 661-673.
WANG Mengting, YANG Wenzhong, WU Yongzhi. Survey of single target tracking algorithms based on Siamese network[J]. Journal of computer applications, 2023, 43(3): 661-673.
[3] 程旭, 刘丽华, 王莹莹, 等. 基于多帧一致性修正的自监督孪生网络目标跟踪方法[J]. 计算机学报, 2022, 45(12): 2544-2560.
CHENG Xu, LIU Lihua, WANG Yingying, et al. A multi-frame consistency correction based self-supervised Siamese network method for object tracking[J]. Chinese journal of computers, 2022, 45(12): 2544-2560.
[4] 周春月, 颜巧. 基于高分辨率孪生网络的单目标追踪算法[J]. 北京交通大学学报, 2020, 44(5): 104-110.
ZHOU Chunyue, YAN Qiao. Single object tracking algorithm based on high-resolution Siamese network[J]. Journal of Beijing Jiaotong University, 2020, 44(5): 104-110.
[5] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Lecture Notes in Computer Science. Cham: Springer, 2016: 850-865.
[6] LI Bo, YAN Junjie, WU Wei, et al. High performance visual tracking with Siamese region proposal network[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8971-8980.
[7] GUO Qing, FENG Wei, ZHOU Ce, et al. Learning dynamic Siamese network for visual object tracking[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 1781-1789.
[8] ZHANG Yunhua, WANG Lijun, QI Jinqing, et al. Structured siamese network for real-time visual tracking[C]//European Conference on Computer Vision. Cham: Springer, 2018: 355-370.
[9] 程语嫣, 张九根, 杨圣伟. 多特征融合和尺度适应的相关滤波跟踪算法[J]. 计算机工程与设计, 2020, 41(12): 3444-3450.
CHENG Yuyan, ZHANG Jiugen, YANG Shengwei. Correlation filtering tracking algorithm based on multi-feature fusion and scale adaptation[J]. Computer engineering and design, 2020, 41(12): 3444-3450.
[10] 茅正冲, 沈雪松. 基于多特征融合的相关滤波跟踪算法[J]. 计算机与数字工程, 2020, 48(11): 2645-2648, 2782.
MAO Zhengchong, SHEN Xuesong. Correlation filter tracking algorithm based on multi-feature fusion[J]. Computer & digital engineering, 2020, 48(11): 2645-2648, 2782.
[11] 蒲磊, 冯新喜, 侯志强, 等. 基于自适应背景选择和多检测区域的相关滤波算法[J]. 电子与信息学报, 2020, 42(12): 3061-3067.
PU Lei, FENG Xinxi, HOU Zhiqiang, et al. Correlation filter algorithm based on adaptive context selection and multiple detection areas[J]. Journal of electronics & information technology, 2020, 42(12): 3061-3067.
[12] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440-1448.
[13] ZHANG Zhipeng, PENG Houwen. Deeper and wider Siamese networks for real-time visual tracking[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4586-4595.
[14] LI Bo, WU Wei, WANG Qiang, et al. SiamRPN: evolution of Siamese visual tracking with very deep networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4277-4286.
[15] GUO Dongyan, WANG Jun, CUI Ying, et al. SiamCAR: Siamese fully convolutional classification and regression for visual tracking[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6268-6276.
[16] ZHU Zheng, WANG Qiang, LI Bo, et al. Distractor-aware siamese networks for visual object tracking[C]//European Conference on Computer Vision. Cham: Springer, 2018: 103–119.
[17] WANG Qiang, TENG Zhu, XING Junliang, et al. Learning attentions: residual attentional Siamese network for high performance online visual tracking[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4854-4863.
[18] ZHANG Lichao, GONZALEZ-GARCIA A, VAN DE WEIJER J, et al. Learning the model update for Siamese trackers[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 4009-4018.
[19] ZHU Zheng, WU Wei, ZOU Wei, et al. End-to-end flow correlation tracking with spatial-temporal attention[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 548-557.
[20] LI Feng, TIAN Cheng, ZUO Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4904-4913.
[21] LUKE?IC A, VOJíR T, ZAJC L C, et al. Discriminative correlation filter with channel and spatial reliability[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4847-4856.
[22] DANELLJAN M, H?GER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 4310-4318.
[23] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000–6010.
[24] ZHANG Shifeng, CHI Cheng, YAO Yongqiang, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9756-9765.
[25] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9626-9635.
[26] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[27] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255.
[28] FAN Heng, LIN Liting, YANG Fan, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5369-5378.
[29] RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International journal of computer vision, 2015, 115(3): 211-252.
[30] WU Yi, LIM J, YANG M H. Online object tracking: a benchmark[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 2411-2418.
[31] Kristan M , Leonardis A , Matas J , et al. The sixth visual object tracking VOT2018 challenge results[C]//European Conference on Computer Vision Workshops. Cham: Springer, 2018: 3–53.
[32] HUANG Lianghua, ZHAO Xin, HUANG Kaiqi. GOT-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(5): 1562-1577.
[33] LI Peixia, CHEN Boyu, OUYANG Wanli, et al. GradNet: gradient-guided network for visual object tracking[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6161-6170.
[34] HU Weiming, WANG Qiang, ZHANG Li, et al. SiamMask: a framework for fast online object tracking and segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(3): 3072-3089.
[35] YAN Bin, ZHAO Haojie, WANG Dong, et al. ‘skimming-perusal’ tracking: a framework for real-time and robust long-term tracking[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 2385-2393.
[36] BHAT G, JOHNANDER J, DANELLJAN M, et al. Unveiling the power of deep tracking[C]//European Conference on Computer Vision. Cham: Springer, 2018: 493-509.
[37] DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6931-6939.
[38] DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: accurate tracking by overlap maximization[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4655-4664.
Similar References:

Memo

-

Last Update: 2024-09-05

Copyright © CAAI Transactions on Intelligent Systems