[1]ZHENG Zhuoran,WEI Yiwen,JIA Xiuyi.UHD image dehazing method based on global and local aware networks[J].CAAI Transactions on Intelligent Systems,2024,19(1):89-96.[doi:10.11992/tis.202304013]
Copy

UHD image dehazing method based on global and local aware networks

References:
[1] ZHENG Zhuoran, REN Wenqi, CAO Xiaochun, et al. Ultra-high-definition image dehazing via multi-guided bilateral learning[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 16180?16189.
[2] TAN R T. Visibility in bad weather from a single image[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2008: 1?8.
[3] HE Kaiming, SUN Jian, TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(12): 2341–2353.
[4] ZHU Qingsong, MAI Jiaming, SHAO Ling. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE transactions on image processing:a publication of the IEEE signal processing society, 2015, 24(11): 3522–3533.
[5] BERMAN D, TREIBITZ T, AVIDAN S. Non-local image dehazing[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1674?1682.
[6] 陈珂, 柯文德, 许波, 等. 改进的彩色图像去雾效果评价方法[J]. 智能系统学报, 2015, 10(5): 803–809
CHEN Ke, KE Wende, XU Bo, et al. An improved assessment method for the color image defogging effect[J]. CAAI transactions on intelligent systems, 2015, 10(5): 803–809
[7] CAI Bolun, XU Xiangmin, JIA Kui, et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE transactions on image processing:a publication of the IEEE signal processing society, 2016, 25(11): 5187–5198.
[8] LI Boyi, PENG Xiulian, WANG Zhangyang, et al. AOD-net: all-in-one dehazing network[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4780?4788.
[9] REN Wenqi, PAN Jinshan, ZHANG Hua, et al. Single image dehazing via multi-scale convolutional neural networks with holistic edges[J]. International journal of computer vision, 2020, 128(1): 240–259.
[10] DENG Zijun, ZHU Lei, HU Xiaowei, et al. Deep multi-model fusion for single-image dehazing[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 2453?2462.
[11] GANDELSMAN Y, SHOCHER A, IRANI M. “double-DIP”: unsupervised image decomposition via coupled deep-image-priors[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 11018?11027.
[12] HONG Ming, XIE Yuan, LI Cuihua, et al. Distilling image dehazing with heterogeneous task imitation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 3459?3468.
[13] LI Runde, PAN Jinshan, LI Zechao, et al. Single image dehazing via conditional generative adversarial network[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8202?8211.
[14] QU Yanyun, CHEN Yizi, HUANG Jingying, et al. Enhanced Pix2pix dehazing network[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 8152?8160.
[15] ZHANG He, PATEL V M. Densely connected pyramid dehazing network[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3194?3203.
[16] CHEN Zeyuan, WANG Yangchao, YANG Yang, et al. PSD: principled synthetic-to-real dehazing guided by physical priors[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 7176?7185.
[17] LIANG Jingyun, CAO Jiezhang, SUN Guolei, et al. SwinIR: image restoration using swin transformer[C]//2021 IEEE/CVF International Conference on Computer Vision Workshops. Montreal: IEEE, 2021: 1833?1844.
[18] YANG Fuzhi, YANG Huan, FU Jianlong, et al. Learning texture transformer network for image super-resolution[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 5790?5799.
[19] LUTHRA A, SULAKHE H, MITTAL T, et al. Eformer: edge enhancement based transformer for medical image denoising[EB/OL]. (2021?09?06)[2023?04?07]. https://arxiv.org/abs/2109.08044.
[20] CHEN Hanting, WANG Yunhe, GUO Tianyu, et al. Pre-trained image processing transformer[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 12294?12305.
[21] CHEN Xiang, LI Hao, LI Mingqiang, et al. Learning A sparse transformer network for effective image deraining[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 5896?5905.
[22] WANG Zhendong, CUN Xiaodong, BAO Jianmin, et al. Uformer: a general U-shaped transformer for image restoration[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 17662?17672.
[23] CHEN Dongdong, HE Mingming, FAN Qingnan, et al. Gated context aggregation network for image dehazing and deraining[C]//2019 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2019: 1375?1383.
[24] DAS S D, DUTTA S. Fast deep multi-patch hierarchical network for nonhomogeneous image dehazing[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 1994?2001.
[25] MEI Kangfu, JIANG Aiwen, LI Juncheng, et al. Progressive feature fusion network for realistic image dehazing[C]//Asian Conference on Computer Vision. Cham: Springer, 2019: 203?215.
[26] TOLSTIKHIN I, HOULSBY N, KOLESNIKOV A, et al. MLP-mixer: an all-MLP architecture for vision[EB/OL]. (2021?05?30)[2023?04?07]. https://arxiv.org/abs/2105.01601.pdf.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems