[1]QU Haicheng,LI Ruike,WANG Meng,et al.Ship detection in remote sensing images via feature reuse and dilated convolution[J].CAAI Transactions on Intelligent Systems,2024,19(5):1298-1308.[doi:10.11992/tis.202304002]
Copy

Ship detection in remote sensing images via feature reuse and dilated convolution

References:
[1] 龚声蓉, 徐少杰, 周立凡, 等. 融入混合注意力的可变形空洞卷积近岸SAR小舰船检测[J]. 中国图象图形学报, 2022, 27(12): 3663-3676.
GONG Shengrong, XU Shaojie, ZHOU Lifan, et al. Deformable atrous convolution nearshore SAR small ship detection incorporating mixed attention[J]. Journal of image and graphics, 2022, 27(12): 3663-3676.
[2] 黎经元, 厉小润, 赵辽英. 基于边缘线分析与聚合通道特征的港口舰船检测[J]. 光学学报, 2019, 39(8): 217-226.
LI Jingyuan, LI Xiaorun, ZHAO Liaoying. Docked ship detection based on edge line analysis and aggregation channel features[J]. Acta optica sinica, 2019, 39(8): 217-226.
[3] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai: IEEE, 2001: 511-518.
[4] 林鹏宇, 马晓珊, 彭晓东. 基于仿真模板和SuperGlue的舰船匹配检测[J]. 计算机仿真, 2023, 40(11): 11-15.
LIN Pengyu, MA Xiaoshan, PENG Xiaodong. Ship target match method based on simulation template and SuperGlue feature matching[J]. Computer simulation, 2023, 40(11): 11-15.
[5] STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]//Proceedings of 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins: IEEE, 1999: 246-252.
[6] 成艳, 孟祥勇, 于雪莲, 等. 海上舰船目标轮廓检测算法[J]. 智能计算机与应用, 2022, 12(8): 119-122.
CHENG Yan, MENG Xiangyong, YU Xuelian, et al. Target contour detection algorithm for marine ships[J]. Intelligent computer and applications, 2022, 12(8): 119-122.
[7] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[8] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[9] XIE Xingxing, CHENG Gong, WANG Jiabao, et al. Oriented R-CNN for object detection[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 3500-3509.
[10] HAN Jiaming, DING Jian, XUE Nan, et al. ReDet: a rotation-equivariant detector for aerial object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 2785-2794.
[11] DING Jian, XUE Nan, LONG Yang, et al. Learning RoI transformer for oriented object detection in aerial images[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2844-2853.
[12] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
[13] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999-3007.
[14] HAN Jiaming, DING Jian, LI Jie, et al. Align deep features for oriented object detection[J]. IEEE transactions on geoscience and remote sensing, 2021, 60: 1-11.
[15] 王慧赢, 王春平, 付强, 等. 面向嵌入式平台的轻量级光学遥感图像舰船检测[J]. 光学学报, 2023, 43(12): 121-134.
WANG Huiying, WANG Chunping, FU Qiang, et al. Lightweight ship detection based on optical remote sensing images for embedded platform[J]. Acta optica sinica, 2023, 43(12): 121-134.
[16] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9626-9635.
[17] YANG Ze, LIU Shaohui, HU Han, et al. RepPoints: point set representation for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9656-9665.
[18] LAW H, DENG Jia. CornerNet: detecting objects as paired keypoints[C]//European Conference on Computer Vision. Cham: Springer, 2018: 765-781.
[19] YANG Xue, SUN Hao, FU Kun, et al. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote sensing, 2018, 10(1): 132.
[20] 成倩, 李佳, 杜娟. 基于YOLOv5的光学遥感图像舰船目标检测算法[J]. 系统工程与电子技术, 2023, 45(5): 1270-1276.
CHENG Qian, LI Jia, DU Juan. Ship target detection algorithm of optical remote sensing image based on YOLOv5[J]. Systems engineering and electronics, 2023, 45(5): 1270-1276.
[21] RAN Bohao, YOU Yanan, LI Zezhong, et al. Arbitrary-oriented ship detection method based on improved regression model for target direction detection network[C]//IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2020: 964-967.
[22] 王昌安, 田金文. 生成对抗网络辅助学习的舰船目标精细识别[J]. 智能系统学报, 2020, 15(2): 296-301.
WANG Chang’an, TIAN Jinwen. Fine-grained inshore ship recognition assisted by deep-learning generative adversarial networks[J]. CAAI transactions on intelligent systems, 2020, 15(2): 296-301.
[23] WANG Panqu, CHEN Pengfei, YUAN Ye, et al. Understanding convolution for semantic segmentation[C]//2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe: IEEE, 2018: 1451-1460.
[24] DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 764-773.
[25] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[26] ZHANG Hang, WU Chongruo, ZHANG Zhongyue, et al. ResNeSt: split-attention networks[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 2735-2745.
[27] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[28] XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3974-3983.
[29] LIU Zikun, YUAN Liu, WENG Lubin, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]//Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods. Porto: SCITEPRESS-Science and Technology Publications, 2017: 324-331.
[30] ZHOU Yue, YANG Xue, ZHANG Gefan, et al. MMRotate: a rotated object detection benchmark using PyTorch[C]//Proceedings of the 30th ACM International Conference on Multimedia. Lisboa Portugal: ACM, 2022: 7331-7334.
[31] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255.
[32] YANG Sheng, PEI Ziqiang, ZHOU Feng, et al. Rotated faster R-CNN for oriented object detection in aerial images[C]//Proceedings of the 2020 3rd International Conference on Robot Systems and Applications. Chengdu: ACM, 2020: 35-39.
Similar References:

Memo

-

Last Update: 2024-09-05

Copyright © CAAI Transactions on Intelligent Systems