[1]CHANG Mingyu,TIAN Le,GUO Maozu.Research on the HHT-LSTM-based operation trend prediction method of temporary facilities for the Winter Olympic Games[J].CAAI Transactions on Intelligent Systems,2024,19(1):228-237.[doi:10.11992/tis.202303003]
Copy

Research on the HHT-LSTM-based operation trend prediction method of temporary facilities for the Winter Olympic Games

References:
[1] 李焱, 贾雅君, 李磊, 等. 基于随机森林算法的短期电力负荷预测[J]. 电力系统保护与控制, 2020, 48(21): 117–124
LI Yan, JIA Yajun, LI Lei, et al. Short term power load forecasting based on a stochastic forest algorithm[J]. Power system protection and control, 2020, 48(21): 117–124
[2] 王帅哲, 王金梅, 王永奇, 等. 基于改进遗传算法的BP神经网络短期电力负荷预测[J]. 国外电子测量技术, 2019, 38(1): 15–18
WANG Shuaizhe, WANG Jinmei, WANG Yongqi, et al. BP neural network short-term power load forecasting based on improved genetic algorithm[J]. Foreign electronic measurement technology, 2019, 38(1): 15–18
[3] DONG Haoran, YU Gang, LIN Tianran, et al. An energy-concentrated wavelet transform for time-frequency analysis of transient signal[J]. Signal processing, 2023, 206: 108934.
[4] LEE H Y, BEH W L, LEM K H. Forecasting with information extracted from the residuals of ARIMA in financial time series using continuous wavelet transform[J]. International journal of business intelligence and data mining, 2023, 22(1/2): 70.
[5] AMIRI M, AGHAEINIA H, AMINDAVAR H R. Automatic epileptic seizure detection in EEG signals using sparse common spatial pattern and adaptive short-time Fourier transform-based synchrosqueezing transform[J]. Biomedical signal processing and control, 2023, 79: 104022.
[6] 孙澄, 曲大刚. 基于神经网络的自然采光办公空间视觉舒适度预测方法研究[C]//数智赋能: 2022全国建筑院系建筑数字技术教学与研究学术研讨会论文集. 厦门, 2022: 357?362.
SUN Cheng, QU Dagang. Research on prediction method of visual comfort in office spaces with natural daylighting based on neural networks [C]// Empowering with Data Intelligence: Proceedings of the National Academic Seminar on Architectural Digital Technology Teaching and Research in Architecture Colleges and Universities 2022. Xiamen, 2022: 357?362.
[7] 李政, 张炜, 明安波, 等. 基于IEWT和MCKD的滚动轴承故障诊断方法[J]. 机械工程学报, 2019, 55(23): 136–146
LI Zheng, ZHANG Wei, MING Anbo, et al. A novel fault diagnosis method based on improved empirical wavelet transform and maximum correlated kurtosis deconvolution for rolling element bearing[J]. Journal of mechanical engineering, 2019, 55(23): 136–146
[8] 蔡艳平, 范宇, 陈万, 等. 改进时频分析和特征融合在内燃机故障诊断中的应用[J]. 中国机械工程, 2020, 31(16): 1901–1911
CAI Yanping, FAN Yu, CHEN Wan, et al. Applications of improved time-frequency analysis and feature fusion in fault diagnosis of IC engines[J]. China mechanical engineering, 2020, 31(16): 1901–1911
[9] 郑近德, 潘海洋, 程军圣, 等. 基于自适应经验傅里叶分解的机械故障诊断方法[J]. 机械工程学报, 2020, 56(9): 125?136.
ZHENG Jinde, PAN Haiyang, CHENG Junsheng, et al. Adaptive empirical Fourier decomposition based mechanical fault diagnosis method[J]. Journal of mechanical engineering, 2020, 56(9): 125?136.
[10] YAZDANPANAH GOHARRIZI A, SEPEHRI N. A wavelet-based approach to internal seal damage diagnosis in hydraulic actuators[J]. IEEE transactions on industrial electronics, 2010, 57(5): 1755–1763.
[11] CHO S, CHOI M, GAO Zhen, et al. Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks[J]. Renewable energy, 2021, 169: 1–13.
[12] 胡爱军, 严家祥, 白泽瑞. 基于MOMEDA和增强倒频谱的风电机组齿轮箱多故障诊断方法[J]. 振动与冲击, 2021, 40(7): 268–273
HU Aijun, YAN Jiaxiang, BAI Zerui. Multi-fault diagnosis method for wind turbine gearbox based on MOMEDA and enhanced cepstrum[J]. Journal of vibration and shock, 2021, 40(7): 268–273
[13] 魏腾飞, 潘庭龙. 基于改进PSO优化LSTM网络的短期电力负荷预测[J]. 系统仿真学报, 2021, 33(8): 1866–1874
WEI Tengfei, PAN Tinglong. Short-term power load forecasting based on LSTM neural network optimized by improved PSO[J]. Journal of system simulation, 2021, 33(8): 1866–1874
[14] 余晓晓. 基于改进LSTM-SVR的预测模型及其在烟草行业的应用研究[D]. 武汉: 华中科技大学, 2020.
YU Xiaoxiao. An improved forecasting model using long short-term memory and support vector regression and its applications in the tobacco industry[D]. Wuhan: Huazhong University of Science and Technology, 2020.
[15] NAPOLITANO G, SERINALDI F, SEE Linda. Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: an empirical examination[J]. Journal of hydrology, 2011, 406(3/4): 199–214.
[16] TAYYAB M, ZHOU J, DONG Jianzhong, et al. Rainfall-runoff modeling at Jinsha River basin by integrated neural network with discrete wavelet transform[J]. Meteorology and atmospheric physics, 2017: 1–11.
[17] 刘艳, 杨耘, 聂磊, 等. 玛纳斯河出山口径流EEMD-ARIMA预测[J]. 水土保持研究, 2017, 24(6): 273–280, 285
LIU Yan, YANGYUN, NIE Lei, et al. The EEMD-ARIMA prediction of runoff at mountain pass of manas river[J]. Research of soil and water conservation, 2017, 24(6): 273–280, 285
[18] 赵力学, 黄解军, 程学军, 等. 基于VMD-BP模型的河流流量预测方法[J]. 长江科学院院报, 2020, 37(7): 47–52
ZHAO Lixue, HUANG Jiejun, CHENG Xuejun, et al. A method of river flow prediction based on VMD-BP model[J]. Journal of Yangtze River scientific research institute, 2020, 37(7): 47–52
[19] 詹可, 朱仁传. 基于EMD-LSTM的波高时间序列预测模型[C]//中国力学学会, 《水动力学研究与进展》编委会, 中国造船工程学会, 中国船舶科学研究中心. 第十六届全国水动力学学术会议暨第三十二届全国水动力学研讨会论文集(上册). 北京:海洋出版社, 2021: 871?878.
ZHAN Ke, ZHU Renchuan. Wave height time series prediction model based on EMD-LSTM [C]// Chinese Society of Theoretical and Applied Mechanics, Journal of Research and Progress in Hydrodynamics Hydrodynamics Editorial Board, Chinese Society of Naval Architecture and Marine Engineering, China Ship Science Research Center. Proceedings of the 16th National Hydrodynamics Academic Conference and the 32nd National Hydrodynamics Seminar (Volume 1). Beijing: China Ocean Press, 2021:871?878.
[20] 姚洪刚, 沐年国. EMD-LSTM模型对金融时间序列的预测[J]. 计算机工程与应用, 2021, 57(5): 239–244
YAO Honggang, MU Nianguo. Prediction of financial time series by EMD-LSTM model[J]. Computer engineering and applications, 2021, 57(5): 239–244
[21] 邹红星, 周小波, 李衍达. 时频分析: 回溯与前瞻[J]. 电子学报, 2000, 28(9): 78–84
ZOU Hongxing, ZHOU Xiaobo, LI Yanda. Which time-frequency analysis—a survey[J]. Acta electronica sinica, 2000, 28(9): 78–84
[22] LIU Xinyu. Fault detection model based on FFT-HHT analysis method[C]//2022 7th International Conference on Intelligent Computing and Signal Processing. Piscataway: IEEE, 2022: 972?975.
[23] OLGA P, ALEXEY P, NATALIA S. Hilbert envelope extraction from real discrete finite signals considering the nonlocality of Hilbert transform[C]//2020 22th International Conference on Digital Signal Processing and its Applications (DSPA). Piscataway: IEEE, 2020: 1?4.
[24] ZHANG Tianjun, SONG Shuang, LI Shugang, et al. Research on gas concentration prediction models based on LSTM multidimensional time series[J]. Energies, 2019, 12(1): 161.
[25] ZHOU Haoyi, ZHANG Shanghang, PENG Jieqi, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(12): 11106–11115.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems