[1]ZHAO Wenqing,XU Lijiao,CHEN Haoyang,et al.Blind image quality assessment based on multi-level feature fusion and semantic enhancement[J].CAAI Transactions on Intelligent Systems,2024,19(1):132-141.[doi:10.11992/tis.202301007]
Copy

Blind image quality assessment based on multi-level feature fusion and semantic enhancement

References:
[1] 方玉明, 眭相杰, 鄢杰斌, 等. 无参考图像质量评价研究进展[J]. 中国图象图形学报, 2021, 26(2): 265–286
FANG Yuming, SUI Xiangjie, YAN Jiebin, et al. Progress in no-reference image quality assessment[J]. Journal of image and graphics, 2021, 26(2): 265–286
[2] 曹玉东, 刘海燕, 贾旭, 等. 基于深度学习的图像质量评价方法综述[J]. 计算机工程与应用, 2021, 57(23): 27–36
CAO Yudong, LIU Haiyan, JIA Xu, et al. Overview of image quality assessment method based on deep learning[J]. Computer engineering and applications, 2021, 57(23): 27–36
[3] 毕晓君, 潘梦迪. 基于生成对抗网络的机载遥感图像超分辨率重建[J]. 智能系统学报, 2020, 15(1): 74–83
BI Xiaojun, PAN Mengdi. Super-resolution reconstruction of airborne remote sensing images based on the generative adversarial networks[J]. CAAI transactions on intelligent systems, 2020, 15(1): 74–83
[4] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE transactions on image processing:a publication of the IEEE signal processing society, 2004, 13(4): 600–612.
[5] GAO Xinbo, LU Wen, TAO Dacheng, et al. Image quality assessment based on multiscale geometric analysis[J]. IEEE transactions on image processing, 2009, 18(7): 1409–1423.
[6] 王志明. 无参考图像质量评价综述[J]. 自动化学报, 2015, 41(6): 1062–1079
WANG Zhiming. Review of no-reference image quality assessment[J]. Acta automatica sinica, 2015, 41(6): 1062–1079
[7] KANG Le, YE Peng, LI Yi, et al. Convolutional neural networks for no-reference image quality assessment[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1733?1740.
[8] XU Jiangtao, YE Peng, LI Qiaohong, et al. Blind image quality assessment based on high order statistics aggregation[J]. IEEE transactions on image processing:a publication of the IEEE signal processing society, 2016, 25(9): 4444–4457.
[9] 严浙平, 曲思瑜, 邢文. 水下图像增强方法研究综述[J]. 智能系统学报, 2022, 17(5): 860–873
YAN Zheping, QU Siyu, XING Wen. An overview of underwater image enhancement methods[J]. CAAI transactions on intelligent systems, 2022, 17(5): 860–873
[10] BOSSE S, MANIRY D, MüLLER K R, et al. Deep neural networks for no-reference and full-reference image quality assessment[J]. IEEE transactions on image processing, 2017, 27(1): 206–219.
[11] WU Jinjian, MA Jupo, LIANG Fuhu, et al. End-to-end blind image quality prediction with cascaded deep neural network[J]. IEEE transactions on image processing, 2020, 29: 7414–7426.
[12] ZHANG Weixia, MA Kede, YAN Jia, et al. Blind image quality assessment using a deep bilinear convolutional neural network[J]. IEEE transactions on circuits and systems for video technology, 2020, 30(1): 36–47.
[13] 鄢杰斌, 方玉明, 刘学林. 图像质量评价研究综述: 从失真的角度[J]. 中国图象图形学报, 2022, 27(5): 1430–1466
YAN Jiebin, FANG Yuming, LIU Xuelin. The review of distortion-related image quality assessment[J]. Journal of image and graphics, 2022, 27(5): 1430–1466
[14] SU Shaolin, YAN Qingsen, ZHU Yu, et al. Blindly assess image quality in the wild guided by a self-adaptive hyper network[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3664?3673.
[15] 杨春玲, 杨雅静. 基于多尺度特征逐层融合深度神经网络的无参考图像质量评价方法[J]. 华南理工大学学报(自然科学版), 2022, 50(4): 81–89,141
YANG Chunling, YANG Yajing. A deep neural network based on layer-by-layer fusion of multi-scale features for no-reference image quality assessment[J]. Journal of South China University of Technology (natural science edition), 2022, 50(4): 81–89,141
[16] YING Zhenqiang, NIU Haoran, GUPTA P, et al. From patches to pictures (PaQ-2-PiQ): mapping the perceptual space of picture quality[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3572?3582.
[17] GHADIYARAM D, BOVIK A C. Massive online crowdsourced study of subjective and objective picture quality[J]. IEEE transactions on image processing, 2015, 25(1): 372–387.
[18] HOSU V, LIN Hanhe, SZIRANYI T, et al. KonIQ-10k: an ecologically valid database for deep learning of blind image quality assessment[J]. IEEE transactions on image processing, 2020, 29: 4041–4056.
[19] 刘玉珍, 刘美怡, 林森等. 多尺度特征融合注意力网络的水下图像增强[J]. 计算机辅助设计与图形学学报, 2023, 35(5): 685–695
LIU Yuzhen, LIU Meiyi, LIN Sen, et al. Underwater image enhancement based on multi-scale feature fusion and attention network[J]. Journal of computer-aided design & computer graphics, 2023, 35(5): 685–695
[20] GOLESTANEH S A, DADSETAN S, KITANI K M. No-reference image quality assessment via transformers, relative ranking, and self-consistency[C]//2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE, 2022: 3989?3999.
[21] GAO Shanghua, CHENG Mingming, ZHAO Kai, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(2): 652–662.
[22] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2016: 770?778.
[23] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2015: 815?823.
[24] LI Dingquan, JIANG Tingting, JIANG Ming. Exploiting high-level semantics for no-reference image quality assessment of realistic blur images[C]//Proceedings of the 25th ACM international conference on Multimedia. New York: ACM, 2017: 378?386.
[25] 高涛, 杨朝晨, 陈婷, 等. 深度多尺度融合注意力残差人脸表情识别网络[J]. 智能系统学报, 2022, 17(2): 393–401
GAO Tao, YANG Zhaochen, CHEN Ting, et al. Deep multiscale fusion attention residual network for facial expression recognition[J]. CAAI transactions on intelligent systems, 2022, 17(2): 393–401
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems